Step |
Hyp |
Ref |
Expression |
1 |
|
itg2uba.1 |
|
2 |
|
itg2uba.2 |
|
3 |
|
itg2uba.3 |
|
4 |
|
itg2uba.4 |
|
5 |
|
itg2uba.5 |
|
6 |
|
itg1cl |
|
7 |
2 6
|
syl |
|
8 |
7
|
rexrd |
|
9 |
|
nulmbl |
|
10 |
3 4 9
|
syl2anc |
|
11 |
|
cmmbl |
|
12 |
10 11
|
syl |
|
13 |
|
ifnot |
|
14 |
|
eldif |
|
15 |
14
|
baibr |
|
16 |
15
|
ifbid |
|
17 |
13 16
|
eqtr3id |
|
18 |
17
|
mpteq2ia |
|
19 |
18
|
i1fres |
|
20 |
2 12 19
|
syl2anc |
|
21 |
|
itg1cl |
|
22 |
20 21
|
syl |
|
23 |
22
|
rexrd |
|
24 |
|
itg2cl |
|
25 |
1 24
|
syl |
|
26 |
|
i1ff |
|
27 |
2 26
|
syl |
|
28 |
|
eldifi |
|
29 |
|
ffvelrn |
|
30 |
27 28 29
|
syl2an |
|
31 |
30
|
leidd |
|
32 |
|
eldif |
|
33 |
|
eleq1w |
|
34 |
|
fveq2 |
|
35 |
33 34
|
ifbieq2d |
|
36 |
|
eqid |
|
37 |
|
c0ex |
|
38 |
|
fvex |
|
39 |
37 38
|
ifex |
|
40 |
35 36 39
|
fvmpt |
|
41 |
|
iffalse |
|
42 |
40 41
|
sylan9eq |
|
43 |
32 42
|
sylbi |
|
44 |
43
|
adantl |
|
45 |
31 44
|
breqtrrd |
|
46 |
2 3 4 20 45
|
itg1lea |
|
47 |
|
iftrue |
|
48 |
47
|
adantl |
|
49 |
1
|
ffvelrnda |
|
50 |
|
elxrge0 |
|
51 |
49 50
|
sylib |
|
52 |
51
|
simprd |
|
53 |
52
|
adantr |
|
54 |
48 53
|
eqbrtrd |
|
55 |
|
iffalse |
|
56 |
55
|
adantl |
|
57 |
14 5
|
sylan2br |
|
58 |
57
|
anassrs |
|
59 |
56 58
|
eqbrtrd |
|
60 |
54 59
|
pm2.61dan |
|
61 |
60
|
ralrimiva |
|
62 |
|
reex |
|
63 |
62
|
a1i |
|
64 |
|
fvex |
|
65 |
37 64
|
ifex |
|
66 |
65
|
a1i |
|
67 |
|
fvexd |
|
68 |
|
eqidd |
|
69 |
1
|
feqmptd |
|
70 |
63 66 67 68 69
|
ofrfval2 |
|
71 |
61 70
|
mpbird |
|
72 |
|
itg2ub |
|
73 |
1 20 71 72
|
syl3anc |
|
74 |
8 23 25 46 73
|
xrletrd |
|