Metamath Proof Explorer


Theorem itg2val

Description: Value of the integral on nonnegative real functions. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Hypothesis itg2val.1 L = x | g dom 1 g f F x = 1 g
Assertion itg2val F : 0 +∞ 2 F = sup L * <

Proof

Step Hyp Ref Expression
1 itg2val.1 L = x | g dom 1 g f F x = 1 g
2 xrltso < Or *
3 2 supex sup L * < V
4 reex V
5 ovex 0 +∞ V
6 breq2 f = F g f f g f F
7 6 anbi1d f = F g f f x = 1 g g f F x = 1 g
8 7 rexbidv f = F g dom 1 g f f x = 1 g g dom 1 g f F x = 1 g
9 8 abbidv f = F x | g dom 1 g f f x = 1 g = x | g dom 1 g f F x = 1 g
10 9 1 eqtr4di f = F x | g dom 1 g f f x = 1 g = L
11 10 supeq1d f = F sup x | g dom 1 g f f x = 1 g * < = sup L * <
12 df-itg2 2 = f 0 +∞ sup x | g dom 1 g f f x = 1 g * <
13 3 4 5 11 12 fvmptmap F : 0 +∞ 2 F = sup L * <