Step |
Hyp |
Ref |
Expression |
1 |
|
itgadd.1 |
|
2 |
|
itgadd.2 |
|
3 |
|
itgadd.3 |
|
4 |
|
itgadd.4 |
|
5 |
|
iblmbf |
|
6 |
2 5
|
syl |
|
7 |
6 1
|
mbfmptcl |
|
8 |
|
iblmbf |
|
9 |
4 8
|
syl |
|
10 |
9 3
|
mbfmptcl |
|
11 |
7 10
|
readdd |
|
12 |
11
|
itgeq2dv |
|
13 |
7
|
recld |
|
14 |
7
|
iblcn |
|
15 |
2 14
|
mpbid |
|
16 |
15
|
simpld |
|
17 |
10
|
recld |
|
18 |
10
|
iblcn |
|
19 |
4 18
|
mpbid |
|
20 |
19
|
simpld |
|
21 |
13 16 17 20 13 17
|
itgaddlem2 |
|
22 |
12 21
|
eqtrd |
|
23 |
7 10
|
imaddd |
|
24 |
23
|
itgeq2dv |
|
25 |
7
|
imcld |
|
26 |
15
|
simprd |
|
27 |
10
|
imcld |
|
28 |
19
|
simprd |
|
29 |
25 26 27 28 25 27
|
itgaddlem2 |
|
30 |
24 29
|
eqtrd |
|
31 |
30
|
oveq2d |
|
32 |
|
ax-icn |
|
33 |
32
|
a1i |
|
34 |
25 26
|
itgcl |
|
35 |
27 28
|
itgcl |
|
36 |
33 34 35
|
adddid |
|
37 |
31 36
|
eqtrd |
|
38 |
22 37
|
oveq12d |
|
39 |
13 16
|
itgcl |
|
40 |
17 20
|
itgcl |
|
41 |
|
mulcl |
|
42 |
32 34 41
|
sylancr |
|
43 |
|
mulcl |
|
44 |
32 35 43
|
sylancr |
|
45 |
39 40 42 44
|
add4d |
|
46 |
38 45
|
eqtrd |
|
47 |
|
ovexd |
|
48 |
1 2 3 4
|
ibladd |
|
49 |
47 48
|
itgcnval |
|
50 |
1 2
|
itgcnval |
|
51 |
3 4
|
itgcnval |
|
52 |
50 51
|
oveq12d |
|
53 |
46 49 52
|
3eqtr4d |
|