Metamath Proof Explorer


Theorem itgadd

Description: Add two integrals over the same domain. (Contributed by Mario Carneiro, 17-Aug-2014)

Ref Expression
Hypotheses itgadd.1 φ x A B V
itgadd.2 φ x A B 𝐿 1
itgadd.3 φ x A C V
itgadd.4 φ x A C 𝐿 1
Assertion itgadd φ A B + C dx = A B dx + A C dx

Proof

Step Hyp Ref Expression
1 itgadd.1 φ x A B V
2 itgadd.2 φ x A B 𝐿 1
3 itgadd.3 φ x A C V
4 itgadd.4 φ x A C 𝐿 1
5 iblmbf x A B 𝐿 1 x A B MblFn
6 2 5 syl φ x A B MblFn
7 6 1 mbfmptcl φ x A B
8 iblmbf x A C 𝐿 1 x A C MblFn
9 4 8 syl φ x A C MblFn
10 9 3 mbfmptcl φ x A C
11 7 10 readdd φ x A B + C = B + C
12 11 itgeq2dv φ A B + C dx = A B + C dx
13 7 recld φ x A B
14 7 iblcn φ x A B 𝐿 1 x A B 𝐿 1 x A B 𝐿 1
15 2 14 mpbid φ x A B 𝐿 1 x A B 𝐿 1
16 15 simpld φ x A B 𝐿 1
17 10 recld φ x A C
18 10 iblcn φ x A C 𝐿 1 x A C 𝐿 1 x A C 𝐿 1
19 4 18 mpbid φ x A C 𝐿 1 x A C 𝐿 1
20 19 simpld φ x A C 𝐿 1
21 13 16 17 20 13 17 itgaddlem2 φ A B + C dx = A B dx + A C dx
22 12 21 eqtrd φ A B + C dx = A B dx + A C dx
23 7 10 imaddd φ x A B + C = B + C
24 23 itgeq2dv φ A B + C dx = A B + C dx
25 7 imcld φ x A B
26 15 simprd φ x A B 𝐿 1
27 10 imcld φ x A C
28 19 simprd φ x A C 𝐿 1
29 25 26 27 28 25 27 itgaddlem2 φ A B + C dx = A B dx + A C dx
30 24 29 eqtrd φ A B + C dx = A B dx + A C dx
31 30 oveq2d φ i A B + C dx = i A B dx + A C dx
32 ax-icn i
33 32 a1i φ i
34 25 26 itgcl φ A B dx
35 27 28 itgcl φ A C dx
36 33 34 35 adddid φ i A B dx + A C dx = i A B dx + i A C dx
37 31 36 eqtrd φ i A B + C dx = i A B dx + i A C dx
38 22 37 oveq12d φ A B + C dx + i A B + C dx = A B dx + A C dx + i A B dx + i A C dx
39 13 16 itgcl φ A B dx
40 17 20 itgcl φ A C dx
41 mulcl i A B dx i A B dx
42 32 34 41 sylancr φ i A B dx
43 mulcl i A C dx i A C dx
44 32 35 43 sylancr φ i A C dx
45 39 40 42 44 add4d φ A B dx + A C dx + i A B dx + i A C dx = A B dx + i A B dx + A C dx + i A C dx
46 38 45 eqtrd φ A B + C dx + i A B + C dx = A B dx + i A B dx + A C dx + i A C dx
47 ovexd φ x A B + C V
48 1 2 3 4 ibladd φ x A B + C 𝐿 1
49 47 48 itgcnval φ A B + C dx = A B + C dx + i A B + C dx
50 1 2 itgcnval φ A B dx = A B dx + i A B dx
51 3 4 itgcnval φ A C dx = A C dx + i A C dx
52 50 51 oveq12d φ A B dx + A C dx = A B dx + i A B dx + A C dx + i A C dx
53 46 49 52 3eqtr4d φ A B + C dx = A B dx + A C dx