Step |
Hyp |
Ref |
Expression |
1 |
|
itgadd.1 |
|
2 |
|
itgadd.2 |
|
3 |
|
itgadd.3 |
|
4 |
|
itgadd.4 |
|
5 |
|
itgadd.5 |
|
6 |
|
itgadd.6 |
|
7 |
|
itgadd.7 |
|
8 |
|
itgadd.8 |
|
9 |
5 6
|
readdcld |
|
10 |
1 2 3 4
|
ibladd |
|
11 |
5 6 7 8
|
addge0d |
|
12 |
9 10 11
|
itgposval |
|
13 |
5 2 7
|
itgposval |
|
14 |
6 4 8
|
itgposval |
|
15 |
13 14
|
oveq12d |
|
16 |
5 7
|
iblpos |
|
17 |
2 16
|
mpbid |
|
18 |
17
|
simpld |
|
19 |
18 5
|
mbfdm2 |
|
20 |
|
mblss |
|
21 |
19 20
|
syl |
|
22 |
|
rembl |
|
23 |
22
|
a1i |
|
24 |
|
elrege0 |
|
25 |
5 7 24
|
sylanbrc |
|
26 |
|
0e0icopnf |
|
27 |
26
|
a1i |
|
28 |
25 27
|
ifclda |
|
29 |
28
|
adantr |
|
30 |
|
eldifn |
|
31 |
30
|
adantl |
|
32 |
31
|
iffalsed |
|
33 |
|
iftrue |
|
34 |
33
|
mpteq2ia |
|
35 |
34 18
|
eqeltrid |
|
36 |
21 23 29 32 35
|
mbfss |
|
37 |
28
|
adantr |
|
38 |
37
|
fmpttd |
|
39 |
17
|
simprd |
|
40 |
|
elrege0 |
|
41 |
6 8 40
|
sylanbrc |
|
42 |
41 27
|
ifclda |
|
43 |
42
|
adantr |
|
44 |
31
|
iffalsed |
|
45 |
|
iftrue |
|
46 |
45
|
mpteq2ia |
|
47 |
6 8
|
iblpos |
|
48 |
4 47
|
mpbid |
|
49 |
48
|
simpld |
|
50 |
46 49
|
eqeltrid |
|
51 |
21 23 43 44 50
|
mbfss |
|
52 |
42
|
adantr |
|
53 |
52
|
fmpttd |
|
54 |
48
|
simprd |
|
55 |
36 38 39 51 53 54
|
itg2add |
|
56 |
|
reex |
|
57 |
56
|
a1i |
|
58 |
|
eqidd |
|
59 |
|
eqidd |
|
60 |
57 37 52 58 59
|
offval2 |
|
61 |
33 45
|
oveq12d |
|
62 |
|
iftrue |
|
63 |
61 62
|
eqtr4d |
|
64 |
|
iffalse |
|
65 |
|
iffalse |
|
66 |
64 65
|
oveq12d |
|
67 |
|
00id |
|
68 |
66 67
|
eqtrdi |
|
69 |
|
iffalse |
|
70 |
68 69
|
eqtr4d |
|
71 |
63 70
|
pm2.61i |
|
72 |
71
|
mpteq2i |
|
73 |
60 72
|
eqtrdi |
|
74 |
73
|
fveq2d |
|
75 |
15 55 74
|
3eqtr2d |
|
76 |
12 75
|
eqtr4d |
|