Step |
Hyp |
Ref |
Expression |
1 |
|
itgadd.1 |
|
2 |
|
itgadd.2 |
|
3 |
|
itgadd.3 |
|
4 |
|
itgadd.4 |
|
5 |
|
itgadd.5 |
|
6 |
|
itgadd.6 |
|
7 |
|
max0sub |
|
8 |
5 7
|
syl |
|
9 |
|
max0sub |
|
10 |
6 9
|
syl |
|
11 |
8 10
|
oveq12d |
|
12 |
|
0re |
|
13 |
|
ifcl |
|
14 |
5 12 13
|
sylancl |
|
15 |
14
|
recnd |
|
16 |
|
ifcl |
|
17 |
6 12 16
|
sylancl |
|
18 |
17
|
recnd |
|
19 |
5
|
renegcld |
|
20 |
|
ifcl |
|
21 |
19 12 20
|
sylancl |
|
22 |
21
|
recnd |
|
23 |
6
|
renegcld |
|
24 |
|
ifcl |
|
25 |
23 12 24
|
sylancl |
|
26 |
25
|
recnd |
|
27 |
15 18 22 26
|
addsub4d |
|
28 |
5 6
|
readdcld |
|
29 |
|
max0sub |
|
30 |
28 29
|
syl |
|
31 |
11 27 30
|
3eqtr4rd |
|
32 |
28
|
renegcld |
|
33 |
|
ifcl |
|
34 |
32 12 33
|
sylancl |
|
35 |
34
|
recnd |
|
36 |
15 18
|
addcld |
|
37 |
|
ifcl |
|
38 |
28 12 37
|
sylancl |
|
39 |
38
|
recnd |
|
40 |
22 26
|
addcld |
|
41 |
35 36 39 40
|
addsubeq4d |
|
42 |
31 41
|
mpbird |
|
43 |
42
|
itgeq2dv |
|
44 |
1 2 3 4
|
ibladd |
|
45 |
28
|
iblre |
|
46 |
44 45
|
mpbid |
|
47 |
46
|
simprd |
|
48 |
14 17
|
readdcld |
|
49 |
5
|
iblre |
|
50 |
2 49
|
mpbid |
|
51 |
50
|
simpld |
|
52 |
6
|
iblre |
|
53 |
4 52
|
mpbid |
|
54 |
53
|
simpld |
|
55 |
14 51 17 54
|
ibladd |
|
56 |
|
max1 |
|
57 |
12 32 56
|
sylancr |
|
58 |
|
max1 |
|
59 |
12 5 58
|
sylancr |
|
60 |
|
max1 |
|
61 |
12 6 60
|
sylancr |
|
62 |
14 17 59 61
|
addge0d |
|
63 |
34 47 48 55 34 48 57 62
|
itgaddlem1 |
|
64 |
46
|
simpld |
|
65 |
21 25
|
readdcld |
|
66 |
50
|
simprd |
|
67 |
53
|
simprd |
|
68 |
21 66 25 67
|
ibladd |
|
69 |
|
max1 |
|
70 |
12 28 69
|
sylancr |
|
71 |
|
max1 |
|
72 |
12 19 71
|
sylancr |
|
73 |
|
max1 |
|
74 |
12 23 73
|
sylancr |
|
75 |
21 25 72 74
|
addge0d |
|
76 |
38 64 65 68 38 65 70 75
|
itgaddlem1 |
|
77 |
43 63 76
|
3eqtr3d |
|
78 |
34 47
|
itgcl |
|
79 |
14 51 17 54 14 17 59 61
|
itgaddlem1 |
|
80 |
14 51
|
itgcl |
|
81 |
17 54
|
itgcl |
|
82 |
80 81
|
addcld |
|
83 |
79 82
|
eqeltrd |
|
84 |
38 64
|
itgcl |
|
85 |
21 66 25 67 21 25 72 74
|
itgaddlem1 |
|
86 |
21 66
|
itgcl |
|
87 |
25 67
|
itgcl |
|
88 |
86 87
|
addcld |
|
89 |
85 88
|
eqeltrd |
|
90 |
78 83 84 89
|
addsubeq4d |
|
91 |
77 90
|
mpbid |
|
92 |
79 85
|
oveq12d |
|
93 |
80 81 86 87
|
addsub4d |
|
94 |
91 92 93
|
3eqtrd |
|
95 |
28 44
|
itgreval |
|
96 |
5 2
|
itgreval |
|
97 |
6 4
|
itgreval |
|
98 |
96 97
|
oveq12d |
|
99 |
94 95 98
|
3eqtr4d |
|