Step |
Hyp |
Ref |
Expression |
1 |
|
itgcn.1 |
|
2 |
|
itgcn.2 |
|
3 |
|
itgcn.3 |
|
4 |
|
iblmbf |
|
5 |
2 4
|
syl |
|
6 |
5 1
|
mbfmptcl |
|
7 |
6
|
abscld |
|
8 |
6
|
absge0d |
|
9 |
|
elrege0 |
|
10 |
7 8 9
|
sylanbrc |
|
11 |
|
0e0icopnf |
|
12 |
11
|
a1i |
|
13 |
10 12
|
ifclda |
|
14 |
13
|
adantr |
|
15 |
14
|
fmpttd |
|
16 |
5 1
|
mbfdm2 |
|
17 |
|
mblss |
|
18 |
16 17
|
syl |
|
19 |
|
rembl |
|
20 |
19
|
a1i |
|
21 |
13
|
adantr |
|
22 |
|
eldifn |
|
23 |
22
|
adantl |
|
24 |
23
|
iffalsed |
|
25 |
|
iftrue |
|
26 |
25
|
mpteq2ia |
|
27 |
1 2
|
iblabs |
|
28 |
7 8
|
iblpos |
|
29 |
27 28
|
mpbid |
|
30 |
29
|
simpld |
|
31 |
26 30
|
eqeltrid |
|
32 |
18 20 21 24 31
|
mbfss |
|
33 |
29
|
simprd |
|
34 |
15 32 33 3
|
itg2cn |
|
35 |
|
simprr |
|
36 |
35
|
sselda |
|
37 |
6
|
adantlr |
|
38 |
36 37
|
syldan |
|
39 |
38
|
abscld |
|
40 |
|
simprl |
|
41 |
37
|
abscld |
|
42 |
27
|
adantr |
|
43 |
35 40 41 42
|
iblss |
|
44 |
38
|
absge0d |
|
45 |
39 43 44
|
itgposval |
|
46 |
35
|
sseld |
|
47 |
46
|
pm4.71d |
|
48 |
47
|
ifbid |
|
49 |
|
ifan |
|
50 |
48 49
|
eqtrdi |
|
51 |
50
|
mpteq2dv |
|
52 |
51
|
fveq2d |
|
53 |
45 52
|
eqtrd |
|
54 |
|
nfv |
|
55 |
|
nffvmpt1 |
|
56 |
|
nfcv |
|
57 |
54 55 56
|
nfif |
|
58 |
|
nfcv |
|
59 |
|
elequ1 |
|
60 |
|
fveq2 |
|
61 |
59 60
|
ifbieq1d |
|
62 |
57 58 61
|
cbvmpt |
|
63 |
|
fvex |
|
64 |
|
c0ex |
|
65 |
63 64
|
ifex |
|
66 |
|
eqid |
|
67 |
66
|
fvmpt2 |
|
68 |
65 67
|
mpan2 |
|
69 |
68
|
ifeq1d |
|
70 |
69
|
mpteq2ia |
|
71 |
62 70
|
eqtri |
|
72 |
71
|
fveq2i |
|
73 |
53 72
|
eqtr4di |
|
74 |
73
|
breq1d |
|
75 |
74
|
biimprd |
|
76 |
75
|
imim2d |
|
77 |
76
|
expr |
|
78 |
77
|
com23 |
|
79 |
78
|
imp4a |
|
80 |
79
|
ralimdva |
|
81 |
80
|
reximdv |
|
82 |
34 81
|
mpd |
|