| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgcn.1 |
|
| 2 |
|
itgcn.2 |
|
| 3 |
|
itgcn.3 |
|
| 4 |
|
iblmbf |
|
| 5 |
2 4
|
syl |
|
| 6 |
5 1
|
mbfmptcl |
|
| 7 |
6
|
abscld |
|
| 8 |
6
|
absge0d |
|
| 9 |
|
elrege0 |
|
| 10 |
7 8 9
|
sylanbrc |
|
| 11 |
|
0e0icopnf |
|
| 12 |
11
|
a1i |
|
| 13 |
10 12
|
ifclda |
|
| 14 |
13
|
adantr |
|
| 15 |
14
|
fmpttd |
|
| 16 |
5 1
|
mbfdm2 |
|
| 17 |
|
mblss |
|
| 18 |
16 17
|
syl |
|
| 19 |
|
rembl |
|
| 20 |
19
|
a1i |
|
| 21 |
13
|
adantr |
|
| 22 |
|
eldifn |
|
| 23 |
22
|
adantl |
|
| 24 |
23
|
iffalsed |
|
| 25 |
|
iftrue |
|
| 26 |
25
|
mpteq2ia |
|
| 27 |
1 2
|
iblabs |
|
| 28 |
7 8
|
iblpos |
|
| 29 |
27 28
|
mpbid |
|
| 30 |
29
|
simpld |
|
| 31 |
26 30
|
eqeltrid |
|
| 32 |
18 20 21 24 31
|
mbfss |
|
| 33 |
29
|
simprd |
|
| 34 |
15 32 33 3
|
itg2cn |
|
| 35 |
|
simprr |
|
| 36 |
35
|
sselda |
|
| 37 |
6
|
adantlr |
|
| 38 |
36 37
|
syldan |
|
| 39 |
38
|
abscld |
|
| 40 |
|
simprl |
|
| 41 |
37
|
abscld |
|
| 42 |
27
|
adantr |
|
| 43 |
35 40 41 42
|
iblss |
|
| 44 |
38
|
absge0d |
|
| 45 |
39 43 44
|
itgposval |
|
| 46 |
35
|
sseld |
|
| 47 |
46
|
pm4.71d |
|
| 48 |
47
|
ifbid |
|
| 49 |
|
ifan |
|
| 50 |
48 49
|
eqtrdi |
|
| 51 |
50
|
mpteq2dv |
|
| 52 |
51
|
fveq2d |
|
| 53 |
45 52
|
eqtrd |
|
| 54 |
|
nfv |
|
| 55 |
|
nffvmpt1 |
|
| 56 |
|
nfcv |
|
| 57 |
54 55 56
|
nfif |
|
| 58 |
|
nfcv |
|
| 59 |
|
elequ1 |
|
| 60 |
|
fveq2 |
|
| 61 |
59 60
|
ifbieq1d |
|
| 62 |
57 58 61
|
cbvmpt |
|
| 63 |
|
fvex |
|
| 64 |
|
c0ex |
|
| 65 |
63 64
|
ifex |
|
| 66 |
|
eqid |
|
| 67 |
66
|
fvmpt2 |
|
| 68 |
65 67
|
mpan2 |
|
| 69 |
68
|
ifeq1d |
|
| 70 |
69
|
mpteq2ia |
|
| 71 |
62 70
|
eqtri |
|
| 72 |
71
|
fveq2i |
|
| 73 |
53 72
|
eqtr4di |
|
| 74 |
73
|
breq1d |
|
| 75 |
74
|
biimprd |
|
| 76 |
75
|
imim2d |
|
| 77 |
76
|
expr |
|
| 78 |
77
|
com23 |
|
| 79 |
78
|
imp4a |
|
| 80 |
79
|
ralimdva |
|
| 81 |
80
|
reximdv |
|
| 82 |
34 81
|
mpd |
|