Metamath Proof Explorer


Theorem itgcnval

Description: Decompose the integral of a complex function into real and imaginary parts. (Contributed by Mario Carneiro, 6-Aug-2014)

Ref Expression
Hypotheses itgcnval.1 φ x A B V
itgcnval.2 φ x A B 𝐿 1
Assertion itgcnval φ A B dx = A B dx + i A B dx

Proof

Step Hyp Ref Expression
1 itgcnval.1 φ x A B V
2 itgcnval.2 φ x A B 𝐿 1
3 eqid 2 x if x A 0 B B 0 = 2 x if x A 0 B B 0
4 eqid 2 x if x A 0 B B 0 = 2 x if x A 0 B B 0
5 eqid 2 x if x A 0 B B 0 = 2 x if x A 0 B B 0
6 eqid 2 x if x A 0 B B 0 = 2 x if x A 0 B B 0
7 3 4 5 6 1 2 itgcnlem φ A B dx = 2 x if x A 0 B B 0 - 2 x if x A 0 B B 0 + i 2 x if x A 0 B B 0 2 x if x A 0 B B 0
8 iblmbf x A B 𝐿 1 x A B MblFn
9 2 8 syl φ x A B MblFn
10 9 1 mbfmptcl φ x A B
11 10 recld φ x A B
12 10 iblcn φ x A B 𝐿 1 x A B 𝐿 1 x A B 𝐿 1
13 2 12 mpbid φ x A B 𝐿 1 x A B 𝐿 1
14 13 simpld φ x A B 𝐿 1
15 11 14 itgrevallem1 φ A B dx = 2 x if x A 0 B B 0 2 x if x A 0 B B 0
16 10 imcld φ x A B
17 13 simprd φ x A B 𝐿 1
18 16 17 itgrevallem1 φ A B dx = 2 x if x A 0 B B 0 2 x if x A 0 B B 0
19 18 oveq2d φ i A B dx = i 2 x if x A 0 B B 0 2 x if x A 0 B B 0
20 15 19 oveq12d φ A B dx + i A B dx = 2 x if x A 0 B B 0 - 2 x if x A 0 B B 0 + i 2 x if x A 0 B B 0 2 x if x A 0 B B 0
21 7 20 eqtr4d φ A B dx = A B dx + i A B dx