Metamath Proof Explorer


Theorem itgeq1

Description: Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion itgeq1 A = B A C dx = B C dx

Proof

Step Hyp Ref Expression
1 nfcv _ x A
2 nfcv _ x B
3 1 2 itgeq1f A = B A C dx = B C dx