Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Integrals
itgeq1d
Next ⟩
mbfres2cn
Metamath Proof Explorer
Ascii
Unicode
Theorem
itgeq1d
Description:
Equality theorem for an integral.
(Contributed by
Glauco Siliprandi
, 11-Dec-2019)
Ref
Expression
Hypothesis
itgeq1d.aeqb
⊢
φ
→
A
=
B
Assertion
itgeq1d
⊢
φ
→
∫
A
C
d
x
=
∫
B
C
d
x
Proof
Step
Hyp
Ref
Expression
1
itgeq1d.aeqb
⊢
φ
→
A
=
B
2
itgeq1
⊢
A
=
B
→
∫
A
C
d
x
=
∫
B
C
d
x
3
1
2
syl
⊢
φ
→
∫
A
C
d
x
=
∫
B
C
d
x