Metamath Proof Explorer


Theorem itgeq1d

Description: Equality theorem for an integral. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis itgeq1d.aeqb φ A = B
Assertion itgeq1d φ A C dx = B C dx

Proof

Step Hyp Ref Expression
1 itgeq1d.aeqb φ A = B
2 itgeq1 A = B A C dx = B C dx
3 1 2 syl φ A C dx = B C dx