Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue integration
Lesbesgue integral
itgeq1f
Next ⟩
itgeq1
Metamath Proof Explorer
Ascii
Unicode
Theorem
itgeq1f
Description:
Equality theorem for an integral.
(Contributed by
Mario Carneiro
, 28-Jun-2014)
Ref
Expression
Hypotheses
itgeq1f.1
⊢
Ⅎ
_
x
A
itgeq1f.2
⊢
Ⅎ
_
x
B
Assertion
itgeq1f
⊢
A
=
B
→
∫
A
C
d
x
=
∫
B
C
d
x
Proof
Step
Hyp
Ref
Expression
1
itgeq1f.1
⊢
Ⅎ
_
x
A
2
itgeq1f.2
⊢
Ⅎ
_
x
B
3
eqid
⊢
ℝ
=
ℝ
4
1
2
nfeq
⊢
Ⅎ
x
A
=
B
5
eleq2
⊢
A
=
B
→
x
∈
A
↔
x
∈
B
6
5
anbi1d
⊢
A
=
B
→
x
∈
A
∧
0
≤
ℜ
⁡
C
i
k
↔
x
∈
B
∧
0
≤
ℜ
⁡
C
i
k
7
6
ifbid
⊢
A
=
B
→
if
x
∈
A
∧
0
≤
ℜ
⁡
C
i
k
ℜ
⁡
C
i
k
0
=
if
x
∈
B
∧
0
≤
ℜ
⁡
C
i
k
ℜ
⁡
C
i
k
0
8
7
a1d
⊢
A
=
B
→
x
∈
ℝ
→
if
x
∈
A
∧
0
≤
ℜ
⁡
C
i
k
ℜ
⁡
C
i
k
0
=
if
x
∈
B
∧
0
≤
ℜ
⁡
C
i
k
ℜ
⁡
C
i
k
0
9
4
8
ralrimi
⊢
A
=
B
→
∀
x
∈
ℝ
if
x
∈
A
∧
0
≤
ℜ
⁡
C
i
k
ℜ
⁡
C
i
k
0
=
if
x
∈
B
∧
0
≤
ℜ
⁡
C
i
k
ℜ
⁡
C
i
k
0
10
mpteq12
⊢
ℝ
=
ℝ
∧
∀
x
∈
ℝ
if
x
∈
A
∧
0
≤
ℜ
⁡
C
i
k
ℜ
⁡
C
i
k
0
=
if
x
∈
B
∧
0
≤
ℜ
⁡
C
i
k
ℜ
⁡
C
i
k
0
→
x
∈
ℝ
⟼
if
x
∈
A
∧
0
≤
ℜ
⁡
C
i
k
ℜ
⁡
C
i
k
0
=
x
∈
ℝ
⟼
if
x
∈
B
∧
0
≤
ℜ
⁡
C
i
k
ℜ
⁡
C
i
k
0
11
3
9
10
sylancr
⊢
A
=
B
→
x
∈
ℝ
⟼
if
x
∈
A
∧
0
≤
ℜ
⁡
C
i
k
ℜ
⁡
C
i
k
0
=
x
∈
ℝ
⟼
if
x
∈
B
∧
0
≤
ℜ
⁡
C
i
k
ℜ
⁡
C
i
k
0
12
11
fveq2d
⊢
A
=
B
→
∫
2
⁡
x
∈
ℝ
⟼
if
x
∈
A
∧
0
≤
ℜ
⁡
C
i
k
ℜ
⁡
C
i
k
0
=
∫
2
⁡
x
∈
ℝ
⟼
if
x
∈
B
∧
0
≤
ℜ
⁡
C
i
k
ℜ
⁡
C
i
k
0
13
12
oveq2d
⊢
A
=
B
→
i
k
⁢
∫
2
⁡
x
∈
ℝ
⟼
if
x
∈
A
∧
0
≤
ℜ
⁡
C
i
k
ℜ
⁡
C
i
k
0
=
i
k
⁢
∫
2
⁡
x
∈
ℝ
⟼
if
x
∈
B
∧
0
≤
ℜ
⁡
C
i
k
ℜ
⁡
C
i
k
0
14
13
sumeq2sdv
⊢
A
=
B
→
∑
k
=
0
3
i
k
⁢
∫
2
⁡
x
∈
ℝ
⟼
if
x
∈
A
∧
0
≤
ℜ
⁡
C
i
k
ℜ
⁡
C
i
k
0
=
∑
k
=
0
3
i
k
⁢
∫
2
⁡
x
∈
ℝ
⟼
if
x
∈
B
∧
0
≤
ℜ
⁡
C
i
k
ℜ
⁡
C
i
k
0
15
eqid
⊢
ℜ
⁡
C
i
k
=
ℜ
⁡
C
i
k
16
15
dfitg
⊢
∫
A
C
d
x
=
∑
k
=
0
3
i
k
⁢
∫
2
⁡
x
∈
ℝ
⟼
if
x
∈
A
∧
0
≤
ℜ
⁡
C
i
k
ℜ
⁡
C
i
k
0
17
15
dfitg
⊢
∫
B
C
d
x
=
∑
k
=
0
3
i
k
⁢
∫
2
⁡
x
∈
ℝ
⟼
if
x
∈
B
∧
0
≤
ℜ
⁡
C
i
k
ℜ
⁡
C
i
k
0
18
14
16
17
3eqtr4g
⊢
A
=
B
→
∫
A
C
d
x
=
∫
B
C
d
x