Metamath Proof Explorer


Theorem itgeq2

Description: Equality theorem for an integral. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion itgeq2 x A B = C A B dx = A C dx

Proof

Step Hyp Ref Expression
1 eqid =
2 simpl x A 0 B i k x A
3 2 con3i ¬ x A ¬ x A 0 B i k
4 3 iffalsed ¬ x A if x A 0 B i k B i k 0 = 0
5 simpl x A 0 C i k x A
6 5 con3i ¬ x A ¬ x A 0 C i k
7 6 iffalsed ¬ x A if x A 0 C i k C i k 0 = 0
8 4 7 eqtr4d ¬ x A if x A 0 B i k B i k 0 = if x A 0 C i k C i k 0
9 fvoveq1 B = C B i k = C i k
10 9 breq2d B = C 0 B i k 0 C i k
11 10 anbi2d B = C x A 0 B i k x A 0 C i k
12 11 9 ifbieq1d B = C if x A 0 B i k B i k 0 = if x A 0 C i k C i k 0
13 8 12 ja x A B = C if x A 0 B i k B i k 0 = if x A 0 C i k C i k 0
14 13 a1d x A B = C x if x A 0 B i k B i k 0 = if x A 0 C i k C i k 0
15 14 ralimi2 x A B = C x if x A 0 B i k B i k 0 = if x A 0 C i k C i k 0
16 mpteq12 = x if x A 0 B i k B i k 0 = if x A 0 C i k C i k 0 x if x A 0 B i k B i k 0 = x if x A 0 C i k C i k 0
17 1 15 16 sylancr x A B = C x if x A 0 B i k B i k 0 = x if x A 0 C i k C i k 0
18 17 fveq2d x A B = C 2 x if x A 0 B i k B i k 0 = 2 x if x A 0 C i k C i k 0
19 18 oveq2d x A B = C i k 2 x if x A 0 B i k B i k 0 = i k 2 x if x A 0 C i k C i k 0
20 19 sumeq2sdv x A B = C k = 0 3 i k 2 x if x A 0 B i k B i k 0 = k = 0 3 i k 2 x if x A 0 C i k C i k 0
21 eqid B i k = B i k
22 21 dfitg A B dx = k = 0 3 i k 2 x if x A 0 B i k B i k 0
23 eqid C i k = C i k
24 23 dfitg A C dx = k = 0 3 i k 2 x if x A 0 C i k C i k 0
25 20 22 24 3eqtr4g x A B = C A B dx = A C dx