Metamath Proof Explorer


Theorem itgeq2dv

Description: Equality theorem for an integral. (Contributed by Mario Carneiro, 7-Jul-2014)

Ref Expression
Hypothesis itgeq2dv.1 φ x A B = C
Assertion itgeq2dv φ A B dx = A C dx

Proof

Step Hyp Ref Expression
1 itgeq2dv.1 φ x A B = C
2 1 ralrimiva φ x A B = C
3 itgeq2 x A B = C A B dx = A C dx
4 2 3 syl φ A B dx = A C dx