Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue integration
Lesbesgue integral
itgex
Next ⟩
itgeq1f
Metamath Proof Explorer
Ascii
Unicode
Theorem
itgex
Description:
An integral is a set.
(Contributed by
Mario Carneiro
, 28-Jun-2014)
Ref
Expression
Assertion
itgex
⊢
∫
A
B
d
x
∈
V
Proof
Step
Hyp
Ref
Expression
1
df-itg
⊢
∫
A
B
d
x
=
∑
k
=
0
3
i
k
⁢
∫
2
⁡
x
∈
ℝ
⟼
⦋
ℜ
⁡
B
i
k
/
y
⦌
if
x
∈
A
∧
0
≤
y
y
0
2
sumex
⊢
∑
k
=
0
3
i
k
⁢
∫
2
⁡
x
∈
ℝ
⟼
⦋
ℜ
⁡
B
i
k
/
y
⦌
if
x
∈
A
∧
0
≤
y
y
0
∈
V
3
1
2
eqeltri
⊢
∫
A
B
d
x
∈
V