Metamath Proof Explorer


Theorem itgex

Description: An integral is a set. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion itgex A B dx V

Proof

Step Hyp Ref Expression
1 df-itg A B dx = k = 0 3 i k 2 x B i k / y if x A 0 y y 0
2 sumex k = 0 3 i k 2 x B i k / y if x A 0 y y 0 V
3 1 2 eqeltri A B dx V