Metamath Proof Explorer


Theorem itgge0

Description: The integral of a positive function is positive. (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Hypotheses itgge0.1 φ x A B 𝐿 1
itgge0.2 φ x A B
itgge0.3 φ x A 0 B
Assertion itgge0 φ 0 A B dx

Proof

Step Hyp Ref Expression
1 itgge0.1 φ x A B 𝐿 1
2 itgge0.2 φ x A B
3 itgge0.3 φ x A 0 B
4 itgz A 0 dx = 0
5 fconstmpt A × 0 = x A 0
6 iblmbf x A B 𝐿 1 x A B MblFn
7 1 6 syl φ x A B MblFn
8 7 2 mbfdm2 φ A dom vol
9 ibl0 A dom vol A × 0 𝐿 1
10 8 9 syl φ A × 0 𝐿 1
11 5 10 eqeltrrid φ x A 0 𝐿 1
12 0red φ x A 0
13 11 1 12 2 3 itgle φ A 0 dx A B dx
14 4 13 eqbrtrrid φ 0 A B dx