Metamath Proof Explorer


Theorem itggt0

Description: The integral of a strictly positive function is positive. (Contributed by Mario Carneiro, 30-Aug-2014)

Ref Expression
Hypotheses itggt0.1 φ 0 < vol A
itggt0.2 φ x A B 𝐿 1
itggt0.3 φ x A B +
Assertion itggt0 φ 0 < A B dx

Proof

Step Hyp Ref Expression
1 itggt0.1 φ 0 < vol A
2 itggt0.2 φ x A B 𝐿 1
3 itggt0.3 φ x A B +
4 iblmbf x A B 𝐿 1 x A B MblFn
5 2 4 syl φ x A B MblFn
6 5 3 mbfdm2 φ A dom vol
7 3 rpred φ x A B
8 3 rpge0d φ x A 0 B
9 elrege0 B 0 +∞ B 0 B
10 7 8 9 sylanbrc φ x A B 0 +∞
11 0e0icopnf 0 0 +∞
12 11 a1i φ ¬ x A 0 0 +∞
13 10 12 ifclda φ if x A B 0 0 +∞
14 13 adantr φ x if x A B 0 0 +∞
15 14 fmpttd φ x if x A B 0 : 0 +∞
16 mblss A dom vol A
17 6 16 syl φ A
18 rembl dom vol
19 18 a1i φ dom vol
20 13 adantr φ x A if x A B 0 0 +∞
21 eldifn x A ¬ x A
22 21 adantl φ x A ¬ x A
23 22 iffalsed φ x A if x A B 0 = 0
24 iftrue x A if x A B 0 = B
25 24 mpteq2ia x A if x A B 0 = x A B
26 25 5 eqeltrid φ x A if x A B 0 MblFn
27 17 19 20 23 26 mbfss φ x if x A B 0 MblFn
28 3 rpgt0d φ x A 0 < B
29 17 sselda φ x A x
30 24 adantl φ x A if x A B 0 = B
31 30 3 eqeltrd φ x A if x A B 0 +
32 eqid x if x A B 0 = x if x A B 0
33 32 fvmpt2 x if x A B 0 + x if x A B 0 x = if x A B 0
34 29 31 33 syl2anc φ x A x if x A B 0 x = if x A B 0
35 34 30 eqtrd φ x A x if x A B 0 x = B
36 28 35 breqtrrd φ x A 0 < x if x A B 0 x
37 36 ralrimiva φ x A 0 < x if x A B 0 x
38 nfcv _ x 0
39 nfcv _ x <
40 nffvmpt1 _ x x if x A B 0 y
41 38 39 40 nfbr x 0 < x if x A B 0 y
42 nfv y 0 < x if x A B 0 x
43 fveq2 y = x x if x A B 0 y = x if x A B 0 x
44 43 breq2d y = x 0 < x if x A B 0 y 0 < x if x A B 0 x
45 41 42 44 cbvralw y A 0 < x if x A B 0 y x A 0 < x if x A B 0 x
46 37 45 sylibr φ y A 0 < x if x A B 0 y
47 46 r19.21bi φ y A 0 < x if x A B 0 y
48 6 1 15 27 47 itg2gt0 φ 0 < 2 x if x A B 0
49 7 2 8 itgposval φ A B dx = 2 x if x A B 0
50 48 49 breqtrrd φ 0 < A B dx