| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itgioo.1 |  | 
						
							| 2 |  | itgioo.2 |  | 
						
							| 3 |  | itgioo.3 |  | 
						
							| 4 |  | ioossicc |  | 
						
							| 5 | 4 | a1i |  | 
						
							| 6 |  | iccssre |  | 
						
							| 7 | 1 2 6 | syl2anc |  | 
						
							| 8 | 1 | rexrd |  | 
						
							| 9 | 2 | rexrd |  | 
						
							| 10 |  | icc0 |  | 
						
							| 11 | 8 9 10 | syl2anc |  | 
						
							| 12 | 11 | biimpar |  | 
						
							| 13 | 12 | difeq1d |  | 
						
							| 14 |  | 0dif |  | 
						
							| 15 |  | 0ss |  | 
						
							| 16 | 14 15 | eqsstri |  | 
						
							| 17 | 13 16 | eqsstrdi |  | 
						
							| 18 |  | uncom |  | 
						
							| 19 | 8 | adantr |  | 
						
							| 20 | 9 | adantr |  | 
						
							| 21 |  | simpr |  | 
						
							| 22 |  | prunioo |  | 
						
							| 23 | 19 20 21 22 | syl3anc |  | 
						
							| 24 | 18 23 | eqtr2id |  | 
						
							| 25 | 24 | difeq1d |  | 
						
							| 26 |  | difun2 |  | 
						
							| 27 | 25 26 | eqtrdi |  | 
						
							| 28 |  | difss |  | 
						
							| 29 | 27 28 | eqsstrdi |  | 
						
							| 30 | 17 29 2 1 | ltlecasei |  | 
						
							| 31 | 1 2 | prssd |  | 
						
							| 32 |  | prfi |  | 
						
							| 33 |  | ovolfi |  | 
						
							| 34 | 32 31 33 | sylancr |  | 
						
							| 35 |  | ovolssnul |  | 
						
							| 36 | 30 31 34 35 | syl3anc |  | 
						
							| 37 | 5 7 36 3 | itgss3 |  | 
						
							| 38 | 37 | simprd |  |