Metamath Proof Explorer


Theorem itgioocnicc

Description: The integral of a piecewise continuous function F on an open interval is equal to the integral of the continuous function G , in the corresponding closed interval. G is equal to F on the open interval, but it is continuous at the two boundaries, also. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses itgioocnicc.a φ A
itgioocnicc.b φ B
itgioocnicc.f φ F : dom F
itgioocnicc.fcn φ F A B : A B cn
itgioocnicc.fdom φ A B dom F
itgioocnicc.r φ R F A B lim A
itgioocnicc.l φ L F A B lim B
itgioocnicc.g G = x A B if x = A R if x = B L F x
Assertion itgioocnicc φ G 𝐿 1 A B G x dx = A B F x dx

Proof

Step Hyp Ref Expression
1 itgioocnicc.a φ A
2 itgioocnicc.b φ B
3 itgioocnicc.f φ F : dom F
4 itgioocnicc.fcn φ F A B : A B cn
5 itgioocnicc.fdom φ A B dom F
6 itgioocnicc.r φ R F A B lim A
7 itgioocnicc.l φ L F A B lim B
8 itgioocnicc.g G = x A B if x = A R if x = B L F x
9 iftrue x = A if x = A R if x = B L F x = R
10 iftrue x = A if x = A R if x = B L F A B x = R
11 9 10 eqtr4d x = A if x = A R if x = B L F x = if x = A R if x = B L F A B x
12 11 adantl φ x A B x = A if x = A R if x = B L F x = if x = A R if x = B L F A B x
13 iftrue x = B if x = B L F x = L
14 iftrue x = B if x = B L F A B x = L
15 13 14 eqtr4d x = B if x = B L F x = if x = B L F A B x
16 15 adantl ¬ x = A x = B if x = B L F x = if x = B L F A B x
17 16 ifeq2d ¬ x = A x = B if x = A R if x = B L F x = if x = A R if x = B L F A B x
18 17 adantll φ x A B ¬ x = A x = B if x = A R if x = B L F x = if x = A R if x = B L F A B x
19 iffalse ¬ x = A if x = A R if x = B L F x = if x = B L F x
20 19 ad2antlr φ x A B ¬ x = A ¬ x = B if x = A R if x = B L F x = if x = B L F x
21 iffalse ¬ x = B if x = B L F x = F x
22 21 adantl φ x A B ¬ x = A ¬ x = B if x = B L F x = F x
23 iffalse ¬ x = A if x = A R if x = B L F A B x = if x = B L F A B x
24 23 ad2antlr φ x A B ¬ x = A ¬ x = B if x = A R if x = B L F A B x = if x = B L F A B x
25 iffalse ¬ x = B if x = B L F A B x = F A B x
26 25 adantl φ x A B ¬ x = A ¬ x = B if x = B L F A B x = F A B x
27 1 adantr φ x A B A
28 27 rexrd φ x A B A *
29 28 ad2antrr φ x A B ¬ x = A ¬ x = B A *
30 2 rexrd φ B *
31 30 ad3antrrr φ x A B ¬ x = A ¬ x = B B *
32 2 adantr φ x A B B
33 simpr φ x A B x A B
34 eliccre A B x A B x
35 27 32 33 34 syl3anc φ x A B x
36 35 ad2antrr φ x A B ¬ x = A ¬ x = B x
37 1 ad2antrr φ x A B ¬ x = A A
38 35 adantr φ x A B ¬ x = A x
39 30 adantr φ x A B B *
40 iccgelb A * B * x A B A x
41 28 39 33 40 syl3anc φ x A B A x
42 41 adantr φ x A B ¬ x = A A x
43 neqne ¬ x = A x A
44 43 adantl φ x A B ¬ x = A x A
45 37 38 42 44 leneltd φ x A B ¬ x = A A < x
46 45 adantr φ x A B ¬ x = A ¬ x = B A < x
47 35 adantr φ x A B ¬ x = B x
48 2 ad2antrr φ x A B ¬ x = B B
49 iccleub A * B * x A B x B
50 28 39 33 49 syl3anc φ x A B x B
51 50 adantr φ x A B ¬ x = B x B
52 eqcom x = B B = x
53 52 notbii ¬ x = B ¬ B = x
54 53 biimpi ¬ x = B ¬ B = x
55 54 neqned ¬ x = B B x
56 55 adantl φ x A B ¬ x = B B x
57 47 48 51 56 leneltd φ x A B ¬ x = B x < B
58 57 adantlr φ x A B ¬ x = A ¬ x = B x < B
59 29 31 36 46 58 eliood φ x A B ¬ x = A ¬ x = B x A B
60 fvres x A B F A B x = F x
61 59 60 syl φ x A B ¬ x = A ¬ x = B F A B x = F x
62 24 26 61 3eqtrrd φ x A B ¬ x = A ¬ x = B F x = if x = A R if x = B L F A B x
63 20 22 62 3eqtrd φ x A B ¬ x = A ¬ x = B if x = A R if x = B L F x = if x = A R if x = B L F A B x
64 18 63 pm2.61dan φ x A B ¬ x = A if x = A R if x = B L F x = if x = A R if x = B L F A B x
65 12 64 pm2.61dan φ x A B if x = A R if x = B L F x = if x = A R if x = B L F A B x
66 65 mpteq2dva φ x A B if x = A R if x = B L F x = x A B if x = A R if x = B L F A B x
67 8 66 syl5eq φ G = x A B if x = A R if x = B L F A B x
68 nfv x φ
69 eqid x A B if x = A R if x = B L F A B x = x A B if x = A R if x = B L F A B x
70 68 69 1 2 4 7 6 cncfiooicc φ x A B if x = A R if x = B L F A B x : A B cn
71 67 70 eqeltrd φ G : A B cn
72 cniccibl A B G : A B cn G 𝐿 1
73 1 2 71 72 syl3anc φ G 𝐿 1
74 9 adantl φ x A B x = A if x = A R if x = B L F x = R
75 limccl F A B lim A
76 75 6 sselid φ R
77 76 ad2antrr φ x A B x = A R
78 74 77 eqeltrd φ x A B x = A if x = A R if x = B L F x
79 19 13 sylan9eq ¬ x = A x = B if x = A R if x = B L F x = L
80 79 adantll φ x A B ¬ x = A x = B if x = A R if x = B L F x = L
81 limccl F A B lim B
82 81 7 sselid φ L
83 82 ad3antrrr φ x A B ¬ x = A x = B L
84 80 83 eqeltrd φ x A B ¬ x = A x = B if x = A R if x = B L F x
85 19 21 sylan9eq ¬ x = A ¬ x = B if x = A R if x = B L F x = F x
86 85 adantll φ x A B ¬ x = A ¬ x = B if x = A R if x = B L F x = F x
87 61 eqcomd φ x A B ¬ x = A ¬ x = B F x = F A B x
88 cncff F A B : A B cn F A B : A B
89 4 88 syl φ F A B : A B
90 89 ad3antrrr φ x A B ¬ x = A ¬ x = B F A B : A B
91 90 59 ffvelrnd φ x A B ¬ x = A ¬ x = B F A B x
92 87 91 eqeltrd φ x A B ¬ x = A ¬ x = B F x
93 86 92 eqeltrd φ x A B ¬ x = A ¬ x = B if x = A R if x = B L F x
94 84 93 pm2.61dan φ x A B ¬ x = A if x = A R if x = B L F x
95 78 94 pm2.61dan φ x A B if x = A R if x = B L F x
96 8 fvmpt2 x A B if x = A R if x = B L F x G x = if x = A R if x = B L F x
97 33 95 96 syl2anc φ x A B G x = if x = A R if x = B L F x
98 97 95 eqeltrd φ x A B G x
99 1 2 98 itgioo φ A B G x dx = A B G x dx
100 99 eqcomd φ A B G x dx = A B G x dx
101 ioossicc A B A B
102 101 sseli x A B x A B
103 102 97 sylan2 φ x A B G x = if x = A R if x = B L F x
104 1 adantr φ x A B A
105 eliooord x A B A < x x < B
106 105 simpld x A B A < x
107 106 adantl φ x A B A < x
108 104 107 gtned φ x A B x A
109 108 neneqd φ x A B ¬ x = A
110 109 19 syl φ x A B if x = A R if x = B L F x = if x = B L F x
111 102 35 sylan2 φ x A B x
112 105 simprd x A B x < B
113 112 adantl φ x A B x < B
114 111 113 ltned φ x A B x B
115 114 neneqd φ x A B ¬ x = B
116 115 21 syl φ x A B if x = B L F x = F x
117 103 110 116 3eqtrd φ x A B G x = F x
118 117 itgeq2dv φ A B G x dx = A B F x dx
119 3 adantr φ x A B F : dom F
120 5 sselda φ x A B x dom F
121 119 120 ffvelrnd φ x A B F x
122 1 2 121 itgioo φ A B F x dx = A B F x dx
123 100 118 122 3eqtrd φ A B G x dx = A B F x dx
124 73 123 jca φ G 𝐿 1 A B G x dx = A B F x dx