Metamath Proof Explorer


Theorem itgitg2

Description: Transfer an integral using S.2 to an equivalent integral using S. . (Contributed by Mario Carneiro, 6-Aug-2014)

Ref Expression
Hypotheses itgitg2.1 φ x A
itgitg2.2 φ x 0 A
itgitg2.3 φ x A 𝐿 1
Assertion itgitg2 φ A dx = 2 x A

Proof

Step Hyp Ref Expression
1 itgitg2.1 φ x A
2 itgitg2.2 φ x 0 A
3 itgitg2.3 φ x A 𝐿 1
4 1 3 2 itgposval φ A dx = 2 x if x A 0
5 iftrue x if x A 0 = A
6 5 mpteq2ia x if x A 0 = x A
7 6 fveq2i 2 x if x A 0 = 2 x A
8 4 7 eqtrdi φ A dx = 2 x A