Metamath Proof Explorer


Theorem itgle

Description: Monotonicity of an integral. (Contributed by Mario Carneiro, 11-Aug-2014)

Ref Expression
Hypotheses itgle.1 φ x A B 𝐿 1
itgle.2 φ x A C 𝐿 1
itgle.3 φ x A B
itgle.4 φ x A C
itgle.5 φ x A B C
Assertion itgle φ A B dx A C dx

Proof

Step Hyp Ref Expression
1 itgle.1 φ x A B 𝐿 1
2 itgle.2 φ x A C 𝐿 1
3 itgle.3 φ x A B
4 itgle.4 φ x A C
5 itgle.5 φ x A B C
6 3 iblrelem φ x A B 𝐿 1 x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0
7 1 6 mpbid φ x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0
8 7 simp2d φ 2 x if x A 0 B B 0
9 4 iblrelem φ x A C 𝐿 1 x A C MblFn 2 x if x A 0 C C 0 2 x if x A 0 C C 0
10 2 9 mpbid φ x A C MblFn 2 x if x A 0 C C 0 2 x if x A 0 C C 0
11 10 simp3d φ 2 x if x A 0 C C 0
12 10 simp2d φ 2 x if x A 0 C C 0
13 7 simp3d φ 2 x if x A 0 B B 0
14 3 ad2ant2r φ x x A 0 B B
15 14 rexrd φ x x A 0 B B *
16 simprr φ x x A 0 B 0 B
17 elxrge0 B 0 +∞ B * 0 B
18 15 16 17 sylanbrc φ x x A 0 B B 0 +∞
19 0e0iccpnf 0 0 +∞
20 19 a1i φ x ¬ x A 0 B 0 0 +∞
21 18 20 ifclda φ x if x A 0 B B 0 0 +∞
22 21 fmpttd φ x if x A 0 B B 0 : 0 +∞
23 4 ad2ant2r φ x x A 0 C C
24 23 rexrd φ x x A 0 C C *
25 simprr φ x x A 0 C 0 C
26 elxrge0 C 0 +∞ C * 0 C
27 24 25 26 sylanbrc φ x x A 0 C C 0 +∞
28 19 a1i φ x ¬ x A 0 C 0 0 +∞
29 27 28 ifclda φ x if x A 0 C C 0 0 +∞
30 29 fmpttd φ x if x A 0 C C 0 : 0 +∞
31 0re 0
32 max1 0 C 0 if 0 C C 0
33 31 4 32 sylancr φ x A 0 if 0 C C 0
34 ifcl C 0 if 0 C C 0
35 4 31 34 sylancl φ x A if 0 C C 0
36 max2 0 C C if 0 C C 0
37 31 4 36 sylancr φ x A C if 0 C C 0
38 3 4 35 5 37 letrd φ x A B if 0 C C 0
39 maxle 0 B if 0 C C 0 if 0 B B 0 if 0 C C 0 0 if 0 C C 0 B if 0 C C 0
40 31 3 35 39 mp3an2i φ x A if 0 B B 0 if 0 C C 0 0 if 0 C C 0 B if 0 C C 0
41 33 38 40 mpbir2and φ x A if 0 B B 0 if 0 C C 0
42 iftrue x A if x A if 0 B B 0 0 = if 0 B B 0
43 42 adantl φ x A if x A if 0 B B 0 0 = if 0 B B 0
44 iftrue x A if x A if 0 C C 0 0 = if 0 C C 0
45 44 adantl φ x A if x A if 0 C C 0 0 = if 0 C C 0
46 41 43 45 3brtr4d φ x A if x A if 0 B B 0 0 if x A if 0 C C 0 0
47 46 ex φ x A if x A if 0 B B 0 0 if x A if 0 C C 0 0
48 0le0 0 0
49 48 a1i ¬ x A 0 0
50 iffalse ¬ x A if x A if 0 B B 0 0 = 0
51 iffalse ¬ x A if x A if 0 C C 0 0 = 0
52 49 50 51 3brtr4d ¬ x A if x A if 0 B B 0 0 if x A if 0 C C 0 0
53 47 52 pm2.61d1 φ if x A if 0 B B 0 0 if x A if 0 C C 0 0
54 ifan if x A 0 B B 0 = if x A if 0 B B 0 0
55 ifan if x A 0 C C 0 = if x A if 0 C C 0 0
56 53 54 55 3brtr4g φ if x A 0 B B 0 if x A 0 C C 0
57 56 ralrimivw φ x if x A 0 B B 0 if x A 0 C C 0
58 reex V
59 58 a1i φ V
60 eqidd φ x if x A 0 B B 0 = x if x A 0 B B 0
61 eqidd φ x if x A 0 C C 0 = x if x A 0 C C 0
62 59 21 29 60 61 ofrfval2 φ x if x A 0 B B 0 f x if x A 0 C C 0 x if x A 0 B B 0 if x A 0 C C 0
63 57 62 mpbird φ x if x A 0 B B 0 f x if x A 0 C C 0
64 itg2le x if x A 0 B B 0 : 0 +∞ x if x A 0 C C 0 : 0 +∞ x if x A 0 B B 0 f x if x A 0 C C 0 2 x if x A 0 B B 0 2 x if x A 0 C C 0
65 22 30 63 64 syl3anc φ 2 x if x A 0 B B 0 2 x if x A 0 C C 0
66 4 renegcld φ x A C
67 66 ad2ant2r φ x x A 0 C C
68 67 rexrd φ x x A 0 C C *
69 simprr φ x x A 0 C 0 C
70 elxrge0 C 0 +∞ C * 0 C
71 68 69 70 sylanbrc φ x x A 0 C C 0 +∞
72 19 a1i φ x ¬ x A 0 C 0 0 +∞
73 71 72 ifclda φ x if x A 0 C C 0 0 +∞
74 73 fmpttd φ x if x A 0 C C 0 : 0 +∞
75 3 renegcld φ x A B
76 75 ad2ant2r φ x x A 0 B B
77 76 rexrd φ x x A 0 B B *
78 simprr φ x x A 0 B 0 B
79 elxrge0 B 0 +∞ B * 0 B
80 77 78 79 sylanbrc φ x x A 0 B B 0 +∞
81 19 a1i φ x ¬ x A 0 B 0 0 +∞
82 80 81 ifclda φ x if x A 0 B B 0 0 +∞
83 82 fmpttd φ x if x A 0 B B 0 : 0 +∞
84 max1 0 B 0 if 0 B B 0
85 31 75 84 sylancr φ x A 0 if 0 B B 0
86 ifcl B 0 if 0 B B 0
87 75 31 86 sylancl φ x A if 0 B B 0
88 3 4 lenegd φ x A B C C B
89 5 88 mpbid φ x A C B
90 max2 0 B B if 0 B B 0
91 31 75 90 sylancr φ x A B if 0 B B 0
92 66 75 87 89 91 letrd φ x A C if 0 B B 0
93 maxle 0 C if 0 B B 0 if 0 C C 0 if 0 B B 0 0 if 0 B B 0 C if 0 B B 0
94 31 66 87 93 mp3an2i φ x A if 0 C C 0 if 0 B B 0 0 if 0 B B 0 C if 0 B B 0
95 85 92 94 mpbir2and φ x A if 0 C C 0 if 0 B B 0
96 iftrue x A if x A if 0 C C 0 0 = if 0 C C 0
97 96 adantl φ x A if x A if 0 C C 0 0 = if 0 C C 0
98 iftrue x A if x A if 0 B B 0 0 = if 0 B B 0
99 98 adantl φ x A if x A if 0 B B 0 0 = if 0 B B 0
100 95 97 99 3brtr4d φ x A if x A if 0 C C 0 0 if x A if 0 B B 0 0
101 100 ex φ x A if x A if 0 C C 0 0 if x A if 0 B B 0 0
102 iffalse ¬ x A if x A if 0 C C 0 0 = 0
103 iffalse ¬ x A if x A if 0 B B 0 0 = 0
104 49 102 103 3brtr4d ¬ x A if x A if 0 C C 0 0 if x A if 0 B B 0 0
105 101 104 pm2.61d1 φ if x A if 0 C C 0 0 if x A if 0 B B 0 0
106 ifan if x A 0 C C 0 = if x A if 0 C C 0 0
107 ifan if x A 0 B B 0 = if x A if 0 B B 0 0
108 105 106 107 3brtr4g φ if x A 0 C C 0 if x A 0 B B 0
109 108 ralrimivw φ x if x A 0 C C 0 if x A 0 B B 0
110 eqidd φ x if x A 0 C C 0 = x if x A 0 C C 0
111 eqidd φ x if x A 0 B B 0 = x if x A 0 B B 0
112 59 73 82 110 111 ofrfval2 φ x if x A 0 C C 0 f x if x A 0 B B 0 x if x A 0 C C 0 if x A 0 B B 0
113 109 112 mpbird φ x if x A 0 C C 0 f x if x A 0 B B 0
114 itg2le x if x A 0 C C 0 : 0 +∞ x if x A 0 B B 0 : 0 +∞ x if x A 0 C C 0 f x if x A 0 B B 0 2 x if x A 0 C C 0 2 x if x A 0 B B 0
115 74 83 113 114 syl3anc φ 2 x if x A 0 C C 0 2 x if x A 0 B B 0
116 8 11 12 13 65 115 le2subd φ 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A 0 C C 0 2 x if x A 0 C C 0
117 3 1 itgrevallem1 φ A B dx = 2 x if x A 0 B B 0 2 x if x A 0 B B 0
118 4 2 itgrevallem1 φ A C dx = 2 x if x A 0 C C 0 2 x if x A 0 C C 0
119 116 117 118 3brtr4d φ A B dx A C dx