Metamath Proof Explorer


Theorem itgless

Description: Expand the integral of a nonnegative function. (Contributed by Mario Carneiro, 31-Aug-2014)

Ref Expression
Hypotheses itgless.1 φ A B
itgless.2 φ A dom vol
itgless.3 φ x B C
itgless.4 φ x B 0 C
itgless.5 φ x B C 𝐿 1
Assertion itgless φ A C dx B C dx

Proof

Step Hyp Ref Expression
1 itgless.1 φ A B
2 itgless.2 φ A dom vol
3 itgless.3 φ x B C
4 itgless.4 φ x B 0 C
5 itgless.5 φ x B C 𝐿 1
6 itgss2 A B A C dx = B if x A C 0 dx
7 1 6 syl φ A C dx = B if x A C 0 dx
8 iblmbf x B C 𝐿 1 x B C MblFn
9 5 8 syl φ x B C MblFn
10 9 3 mbfdm2 φ B dom vol
11 1 sselda φ x A x B
12 11 3 syldan φ x A C
13 0re 0
14 ifcl C 0 if x A C 0
15 12 13 14 sylancl φ x A if x A C 0
16 eldifn x B A ¬ x A
17 16 adantl φ x B A ¬ x A
18 17 iffalsed φ x B A if x A C 0 = 0
19 iftrue x A if x A C 0 = C
20 19 mpteq2ia x A if x A C 0 = x A C
21 1 2 3 5 iblss φ x A C 𝐿 1
22 20 21 eqeltrid φ x A if x A C 0 𝐿 1
23 1 10 15 18 22 iblss2 φ x B if x A C 0 𝐿 1
24 3 13 14 sylancl φ x B if x A C 0
25 3 leidd φ x B C C
26 breq1 C = if x A C 0 C C if x A C 0 C
27 breq1 0 = if x A C 0 0 C if x A C 0 C
28 26 27 ifboth C C 0 C if x A C 0 C
29 25 4 28 syl2anc φ x B if x A C 0 C
30 23 5 24 3 29 itgle φ B if x A C 0 dx B C dx
31 7 30 eqbrtrd φ A C dx B C dx