Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue integration
Lesbesgue integral
itgmpt
Next ⟩
itgcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
itgmpt
Description:
Change bound variable in an integral.
(Contributed by
Mario Carneiro
, 29-Jun-2014)
Ref
Expression
Hypothesis
itgmpt.1
⊢
φ
∧
x
∈
A
→
B
∈
V
Assertion
itgmpt
⊢
φ
→
∫
A
B
d
x
=
∫
A
x
∈
A
⟼
B
⁡
y
d
y
Proof
Step
Hyp
Ref
Expression
1
itgmpt.1
⊢
φ
∧
x
∈
A
→
B
∈
V
2
fveq2
⊢
y
=
x
→
x
∈
A
⟼
B
⁡
y
=
x
∈
A
⟼
B
⁡
x
3
nffvmpt1
⊢
Ⅎ
_
x
x
∈
A
⟼
B
⁡
y
4
nfcv
⊢
Ⅎ
_
y
x
∈
A
⟼
B
⁡
x
5
2
3
4
cbvitg
⊢
∫
A
x
∈
A
⟼
B
⁡
y
d
y
=
∫
A
x
∈
A
⟼
B
⁡
x
d
x
6
simpr
⊢
φ
∧
x
∈
A
→
x
∈
A
7
eqid
⊢
x
∈
A
⟼
B
=
x
∈
A
⟼
B
8
7
fvmpt2
⊢
x
∈
A
∧
B
∈
V
→
x
∈
A
⟼
B
⁡
x
=
B
9
6
1
8
syl2anc
⊢
φ
∧
x
∈
A
→
x
∈
A
⟼
B
⁡
x
=
B
10
9
itgeq2dv
⊢
φ
→
∫
A
x
∈
A
⟼
B
⁡
x
d
x
=
∫
A
B
d
x
11
5
10
eqtr2id
⊢
φ
→
∫
A
B
d
x
=
∫
A
x
∈
A
⟼
B
⁡
y
d
y