Metamath Proof Explorer


Theorem itgmulc2lem1

Description: Lemma for itgmulc2 : positive real case. (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Hypotheses itgmulc2.1 φ C
itgmulc2.2 φ x A B V
itgmulc2.3 φ x A B 𝐿 1
itgmulc2.4 φ C
itgmulc2.5 φ x A B
itgmulc2.6 φ 0 C
itgmulc2.7 φ x A 0 B
Assertion itgmulc2lem1 φ C A B dx = A C B dx

Proof

Step Hyp Ref Expression
1 itgmulc2.1 φ C
2 itgmulc2.2 φ x A B V
3 itgmulc2.3 φ x A B 𝐿 1
4 itgmulc2.4 φ C
5 itgmulc2.5 φ x A B
6 itgmulc2.6 φ 0 C
7 itgmulc2.7 φ x A 0 B
8 elrege0 B 0 +∞ B 0 B
9 5 7 8 sylanbrc φ x A B 0 +∞
10 0e0icopnf 0 0 +∞
11 10 a1i φ ¬ x A 0 0 +∞
12 9 11 ifclda φ if x A B 0 0 +∞
13 12 adantr φ x if x A B 0 0 +∞
14 13 fmpttd φ x if x A B 0 : 0 +∞
15 5 7 iblpos φ x A B 𝐿 1 x A B MblFn 2 x if x A B 0
16 3 15 mpbid φ x A B MblFn 2 x if x A B 0
17 16 simprd φ 2 x if x A B 0
18 elrege0 C 0 +∞ C 0 C
19 4 6 18 sylanbrc φ C 0 +∞
20 14 17 19 itg2mulc φ 2 × C × f x if x A B 0 = C 2 x if x A B 0
21 reex V
22 21 a1i φ V
23 4 adantr φ x C
24 fconstmpt × C = x C
25 24 a1i φ × C = x C
26 eqidd φ x if x A B 0 = x if x A B 0
27 22 23 13 25 26 offval2 φ × C × f x if x A B 0 = x C if x A B 0
28 ovif2 C if x A B 0 = if x A C B C 0
29 1 mul01d φ C 0 = 0
30 29 adantr φ x C 0 = 0
31 30 ifeq2d φ x if x A C B C 0 = if x A C B 0
32 28 31 syl5eq φ x C if x A B 0 = if x A C B 0
33 32 mpteq2dva φ x C if x A B 0 = x if x A C B 0
34 27 33 eqtrd φ × C × f x if x A B 0 = x if x A C B 0
35 34 fveq2d φ 2 × C × f x if x A B 0 = 2 x if x A C B 0
36 20 35 eqtr3d φ C 2 x if x A B 0 = 2 x if x A C B 0
37 5 3 7 itgposval φ A B dx = 2 x if x A B 0
38 37 oveq2d φ C A B dx = C 2 x if x A B 0
39 4 adantr φ x A C
40 39 5 remulcld φ x A C B
41 1 2 3 iblmulc2 φ x A C B 𝐿 1
42 6 adantr φ x A 0 C
43 39 5 42 7 mulge0d φ x A 0 C B
44 40 41 43 itgposval φ A C B dx = 2 x if x A C B 0
45 36 38 44 3eqtr4d φ C A B dx = A C B dx