Metamath Proof Explorer


Theorem itgneg

Description: Negation of an integral. (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Hypotheses itgcnval.1 φ x A B V
itgcnval.2 φ x A B 𝐿 1
Assertion itgneg φ A B dx = A B dx

Proof

Step Hyp Ref Expression
1 itgcnval.1 φ x A B V
2 itgcnval.2 φ x A B 𝐿 1
3 iblmbf x A B 𝐿 1 x A B MblFn
4 2 3 syl φ x A B MblFn
5 4 1 mbfmptcl φ x A B
6 5 recld φ x A B
7 5 iblcn φ x A B 𝐿 1 x A B 𝐿 1 x A B 𝐿 1
8 2 7 mpbid φ x A B 𝐿 1 x A B 𝐿 1
9 8 simpld φ x A B 𝐿 1
10 6 9 itgcl φ A B dx
11 ax-icn i
12 5 imcld φ x A B
13 8 simprd φ x A B 𝐿 1
14 12 13 itgcl φ A B dx
15 mulcl i A B dx i A B dx
16 11 14 15 sylancr φ i A B dx
17 10 16 negdid φ A B dx + i A B dx = - A B dx + i A B dx
18 0re 0
19 ifcl B 0 if 0 B B 0
20 6 18 19 sylancl φ x A if 0 B B 0
21 6 iblre φ x A B 𝐿 1 x A if 0 B B 0 𝐿 1 x A if 0 B B 0 𝐿 1
22 9 21 mpbid φ x A if 0 B B 0 𝐿 1 x A if 0 B B 0 𝐿 1
23 22 simpld φ x A if 0 B B 0 𝐿 1
24 20 23 itgcl φ A if 0 B B 0 dx
25 6 renegcld φ x A B
26 ifcl B 0 if 0 B B 0
27 25 18 26 sylancl φ x A if 0 B B 0
28 22 simprd φ x A if 0 B B 0 𝐿 1
29 27 28 itgcl φ A if 0 B B 0 dx
30 24 29 negsubdi2d φ A if 0 B B 0 dx A if 0 B B 0 dx = A if 0 B B 0 dx A if 0 B B 0 dx
31 6 9 itgreval φ A B dx = A if 0 B B 0 dx A if 0 B B 0 dx
32 31 negeqd φ A B dx = A if 0 B B 0 dx A if 0 B B 0 dx
33 5 negcld φ x A B
34 33 recld φ x A B
35 1 2 iblneg φ x A B 𝐿 1
36 33 iblcn φ x A B 𝐿 1 x A B 𝐿 1 x A B 𝐿 1
37 35 36 mpbid φ x A B 𝐿 1 x A B 𝐿 1
38 37 simpld φ x A B 𝐿 1
39 34 38 itgreval φ A B dx = A if 0 B B 0 dx A if 0 B B 0 dx
40 5 renegd φ x A B = B
41 40 breq2d φ x A 0 B 0 B
42 41 40 ifbieq1d φ x A if 0 B B 0 = if 0 B B 0
43 42 itgeq2dv φ A if 0 B B 0 dx = A if 0 B B 0 dx
44 40 negeqd φ x A B = B
45 6 recnd φ x A B
46 45 negnegd φ x A B = B
47 44 46 eqtrd φ x A B = B
48 47 breq2d φ x A 0 B 0 B
49 48 47 ifbieq1d φ x A if 0 B B 0 = if 0 B B 0
50 49 itgeq2dv φ A if 0 B B 0 dx = A if 0 B B 0 dx
51 43 50 oveq12d φ A if 0 B B 0 dx A if 0 B B 0 dx = A if 0 B B 0 dx A if 0 B B 0 dx
52 39 51 eqtrd φ A B dx = A if 0 B B 0 dx A if 0 B B 0 dx
53 30 32 52 3eqtr4d φ A B dx = A B dx
54 mulneg2 i A B dx i A B dx = i A B dx
55 11 14 54 sylancr φ i A B dx = i A B dx
56 ifcl B 0 if 0 B B 0
57 12 18 56 sylancl φ x A if 0 B B 0
58 12 iblre φ x A B 𝐿 1 x A if 0 B B 0 𝐿 1 x A if 0 B B 0 𝐿 1
59 13 58 mpbid φ x A if 0 B B 0 𝐿 1 x A if 0 B B 0 𝐿 1
60 59 simpld φ x A if 0 B B 0 𝐿 1
61 57 60 itgcl φ A if 0 B B 0 dx
62 12 renegcld φ x A B
63 ifcl B 0 if 0 B B 0
64 62 18 63 sylancl φ x A if 0 B B 0
65 59 simprd φ x A if 0 B B 0 𝐿 1
66 64 65 itgcl φ A if 0 B B 0 dx
67 61 66 negsubdi2d φ A if 0 B B 0 dx A if 0 B B 0 dx = A if 0 B B 0 dx A if 0 B B 0 dx
68 5 imnegd φ x A B = B
69 68 breq2d φ x A 0 B 0 B
70 69 68 ifbieq1d φ x A if 0 B B 0 = if 0 B B 0
71 70 itgeq2dv φ A if 0 B B 0 dx = A if 0 B B 0 dx
72 68 negeqd φ x A B = B
73 12 recnd φ x A B
74 73 negnegd φ x A B = B
75 72 74 eqtrd φ x A B = B
76 75 breq2d φ x A 0 B 0 B
77 76 75 ifbieq1d φ x A if 0 B B 0 = if 0 B B 0
78 77 itgeq2dv φ A if 0 B B 0 dx = A if 0 B B 0 dx
79 71 78 oveq12d φ A if 0 B B 0 dx A if 0 B B 0 dx = A if 0 B B 0 dx A if 0 B B 0 dx
80 67 79 eqtr4d φ A if 0 B B 0 dx A if 0 B B 0 dx = A if 0 B B 0 dx A if 0 B B 0 dx
81 12 13 itgreval φ A B dx = A if 0 B B 0 dx A if 0 B B 0 dx
82 81 negeqd φ A B dx = A if 0 B B 0 dx A if 0 B B 0 dx
83 33 imcld φ x A B
84 37 simprd φ x A B 𝐿 1
85 83 84 itgreval φ A B dx = A if 0 B B 0 dx A if 0 B B 0 dx
86 80 82 85 3eqtr4d φ A B dx = A B dx
87 86 oveq2d φ i A B dx = i A B dx
88 55 87 eqtr3d φ i A B dx = i A B dx
89 53 88 oveq12d φ - A B dx + i A B dx = A B dx + i A B dx
90 17 89 eqtrd φ A B dx + i A B dx = A B dx + i A B dx
91 1 2 itgcnval φ A B dx = A B dx + i A B dx
92 91 negeqd φ A B dx = A B dx + i A B dx
93 33 35 itgcnval φ A B dx = A B dx + i A B dx
94 90 92 93 3eqtr4d φ A B dx = A B dx