Metamath Proof Explorer


Theorem itgrecl

Description: Real closure of an integral. (Contributed by Mario Carneiro, 11-Aug-2014)

Ref Expression
Hypotheses itgrecl.1 φ x A B
itgrecl.2 φ x A B 𝐿 1
Assertion itgrecl φ A B dx

Proof

Step Hyp Ref Expression
1 itgrecl.1 φ x A B
2 itgrecl.2 φ x A B 𝐿 1
3 1 2 itgrevallem1 φ A B dx = 2 x if x A 0 B B 0 2 x if x A 0 B B 0
4 1 iblrelem φ x A B 𝐿 1 x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0
5 2 4 mpbid φ x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0
6 resubcl 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A 0 B B 0
7 6 3adant1 x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A 0 B B 0
8 5 7 syl φ 2 x if x A 0 B B 0 2 x if x A 0 B B 0
9 3 8 eqeltrd φ A B dx