Step |
Hyp |
Ref |
Expression |
1 |
|
iblrelem.1 |
|
2 |
|
itgreval.2 |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
3 4 5 6 1 2
|
itgcnlem |
|
8 |
1
|
rered |
|
9 |
8
|
ibllem |
|
10 |
9
|
mpteq2dv |
|
11 |
10
|
fveq2d |
|
12 |
8
|
negeqd |
|
13 |
12
|
ibllem |
|
14 |
13
|
mpteq2dv |
|
15 |
14
|
fveq2d |
|
16 |
11 15
|
oveq12d |
|
17 |
1
|
reim0d |
|
18 |
17
|
itgvallem3 |
|
19 |
17
|
negeqd |
|
20 |
|
neg0 |
|
21 |
19 20
|
eqtrdi |
|
22 |
21
|
itgvallem3 |
|
23 |
18 22
|
oveq12d |
|
24 |
|
0m0e0 |
|
25 |
23 24
|
eqtrdi |
|
26 |
25
|
oveq2d |
|
27 |
|
it0e0 |
|
28 |
26 27
|
eqtrdi |
|
29 |
16 28
|
oveq12d |
|
30 |
1
|
iblrelem |
|
31 |
2 30
|
mpbid |
|
32 |
31
|
simp2d |
|
33 |
31
|
simp3d |
|
34 |
32 33
|
resubcld |
|
35 |
34
|
recnd |
|
36 |
35
|
addid1d |
|
37 |
7 29 36
|
3eqtrd |
|