| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iblrelem.1 |  | 
						
							| 2 |  | itgreval.2 |  | 
						
							| 3 |  | eqid |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 | 3 4 5 6 1 2 | itgcnlem |  | 
						
							| 8 | 1 | rered |  | 
						
							| 9 | 8 | ibllem |  | 
						
							| 10 | 9 | mpteq2dv |  | 
						
							| 11 | 10 | fveq2d |  | 
						
							| 12 | 8 | negeqd |  | 
						
							| 13 | 12 | ibllem |  | 
						
							| 14 | 13 | mpteq2dv |  | 
						
							| 15 | 14 | fveq2d |  | 
						
							| 16 | 11 15 | oveq12d |  | 
						
							| 17 | 1 | reim0d |  | 
						
							| 18 | 17 | itgvallem3 |  | 
						
							| 19 | 17 | negeqd |  | 
						
							| 20 |  | neg0 |  | 
						
							| 21 | 19 20 | eqtrdi |  | 
						
							| 22 | 21 | itgvallem3 |  | 
						
							| 23 | 18 22 | oveq12d |  | 
						
							| 24 |  | 0m0e0 |  | 
						
							| 25 | 23 24 | eqtrdi |  | 
						
							| 26 | 25 | oveq2d |  | 
						
							| 27 |  | it0e0 |  | 
						
							| 28 | 26 27 | eqtrdi |  | 
						
							| 29 | 16 28 | oveq12d |  | 
						
							| 30 | 1 | iblrelem |  | 
						
							| 31 | 2 30 | mpbid |  | 
						
							| 32 | 31 | simp2d |  | 
						
							| 33 | 31 | simp3d |  | 
						
							| 34 | 32 33 | resubcld |  | 
						
							| 35 | 34 | recnd |  | 
						
							| 36 | 35 | addridd |  | 
						
							| 37 | 7 29 36 | 3eqtrd |  |