Metamath Proof Explorer


Theorem itgsbtaddcnst

Description: Integral substitution, adding a constant to the function's argument. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses itgsbtaddcnst.a φ A
itgsbtaddcnst.b φ B
itgsbtaddcnst.aleb φ A B
itgsbtaddcnst.x φ X
itgsbtaddcnst.f φ F : A B cn
Assertion itgsbtaddcnst φ A X B X F X + s ds = A B F t dt

Proof

Step Hyp Ref Expression
1 itgsbtaddcnst.a φ A
2 itgsbtaddcnst.b φ B
3 itgsbtaddcnst.aleb φ A B
4 itgsbtaddcnst.x φ X
5 itgsbtaddcnst.f φ F : A B cn
6 1 2 iccssred φ A B
7 6 sselda φ t A B t
8 7 recnd φ t A B t
9 4 recnd φ X
10 9 adantr φ t A B X
11 8 10 negsubd φ t A B t + X = t X
12 11 eqcomd φ t A B t X = t + X
13 12 mpteq2dva φ t A B t X = t A B t + X
14 1 adantr φ t A B A
15 4 adantr φ t A B X
16 14 15 resubcld φ t A B A X
17 2 adantr φ t A B B
18 17 15 resubcld φ t A B B X
19 7 15 resubcld φ t A B t X
20 simpr φ t A B t A B
21 1 2 jca φ A B
22 21 adantr φ t A B A B
23 elicc2 A B t A B t A t t B
24 22 23 syl φ t A B t A B t A t t B
25 20 24 mpbid φ t A B t A t t B
26 25 simp2d φ t A B A t
27 14 7 15 26 lesub1dd φ t A B A X t X
28 25 simp3d φ t A B t B
29 7 17 15 28 lesub1dd φ t A B t X B X
30 16 18 19 27 29 eliccd φ t A B t X A X B X
31 30 fmpttd φ t A B t X : A B A X B X
32 13 31 feq1dd φ t A B t + X : A B A X B X
33 1 4 resubcld φ A X
34 2 4 resubcld φ B X
35 33 34 iccssred φ A X B X
36 ax-resscn
37 35 36 sstrdi φ A X B X
38 6 36 sstrdi φ A B
39 38 resmptd φ t t X A B = t A B t X
40 ssid
41 cncfmptid t t : cn
42 40 40 41 mp2an t t : cn
43 42 a1i X t t : cn
44 40 a1i X
45 id X X
46 44 45 44 constcncfg X t X : cn
47 43 46 subcncf X t t X : cn
48 9 47 syl φ t t X : cn
49 rescncf A B t t X : cn t t X A B : A B cn
50 38 48 49 sylc φ t t X A B : A B cn
51 39 50 eqeltrrd φ t A B t X : A B cn
52 13 51 eqeltrrd φ t A B t + X : A B cn
53 cncffvrn A X B X t A B t + X : A B cn t A B t + X : A B cn A X B X t A B t + X : A B A X B X
54 37 52 53 syl2anc φ t A B t + X : A B cn A X B X t A B t + X : A B A X B X
55 32 54 mpbird φ t A B t + X : A B cn A X B X
56 13 55 eqeltrd φ t A B t X : A B cn A X B X
57 eqid s X + s = s X + s
58 9 adantr φ s X
59 simpr φ s s
60 58 59 addcomd φ s X + s = s + X
61 60 mpteq2dva φ s X + s = s s + X
62 eqid s s + X = s s + X
63 62 addccncf X s s + X : cn
64 9 63 syl φ s s + X : cn
65 61 64 eqeltrd φ s X + s : cn
66 1 adantr φ s A X B X A
67 2 adantr φ s A X B X B
68 4 adantr φ s A X B X X
69 35 sselda φ s A X B X s
70 68 69 readdcld φ s A X B X X + s
71 simpr φ s A X B X s A X B X
72 33 adantr φ s A X B X A X
73 34 adantr φ s A X B X B X
74 elicc2 A X B X s A X B X s A X s s B X
75 72 73 74 syl2anc φ s A X B X s A X B X s A X s s B X
76 71 75 mpbid φ s A X B X s A X s s B X
77 76 simp2d φ s A X B X A X s
78 66 68 69 lesubadd2d φ s A X B X A X s A X + s
79 77 78 mpbid φ s A X B X A X + s
80 76 simp3d φ s A X B X s B X
81 68 69 67 leaddsub2d φ s A X B X X + s B s B X
82 80 81 mpbird φ s A X B X X + s B
83 66 67 70 79 82 eliccd φ s A X B X X + s A B
84 57 65 37 38 83 cncfmptssg φ s A X B X X + s : A X B X cn A B
85 84 5 cncfcompt φ s A X B X F X + s : A X B X cn
86 ax-1cn 1
87 ioosscn A B
88 cncfmptc 1 A B t A B 1 : A B cn
89 86 87 40 88 mp3an t A B 1 : A B cn
90 89 a1i φ t A B 1 : A B cn
91 fconstmpt A B × 1 = t A B 1
92 ioombl A B dom vol
93 92 a1i φ A B dom vol
94 volioo A B A B vol A B = B A
95 1 2 3 94 syl3anc φ vol A B = B A
96 2 1 resubcld φ B A
97 95 96 eqeltrd φ vol A B
98 1cnd φ 1
99 iblconst A B dom vol vol A B 1 A B × 1 𝐿 1
100 93 97 98 99 syl3anc φ A B × 1 𝐿 1
101 91 100 eqeltrrid φ t A B 1 𝐿 1
102 90 101 elind φ t A B 1 A B cn 𝐿 1
103 36 a1i φ
104 19 recnd φ t A B t X
105 eqid TopOpen fld = TopOpen fld
106 105 tgioo2 topGen ran . = TopOpen fld 𝑡
107 iccntr A B int topGen ran . A B = A B
108 21 107 syl φ int topGen ran . A B = A B
109 103 6 104 106 105 108 dvmptntr φ dt A B t X d t = dt A B t X d t
110 reelprrecn
111 110 a1i φ
112 ioossre A B
113 112 sseli t A B t
114 113 adantl φ t A B t
115 114 recnd φ t A B t
116 1cnd φ t A B 1
117 103 sselda φ t t
118 1cnd φ t 1
119 111 dvmptid φ dt t d t = t 1
120 112 a1i φ A B
121 iooretop A B topGen ran .
122 121 a1i φ A B topGen ran .
123 111 117 118 119 120 106 105 122 dvmptres φ dt A B t d t = t A B 1
124 9 adantr φ t A B X
125 0cnd φ t A B 0
126 9 adantr φ t X
127 0cnd φ t 0
128 111 9 dvmptc φ dt X d t = t 0
129 111 126 127 128 120 106 105 122 dvmptres φ dt A B X d t = t A B 0
130 111 115 116 123 124 125 129 dvmptsub φ dt A B t X d t = t A B 1 0
131 116 subid1d φ t A B 1 0 = 1
132 131 mpteq2dva φ t A B 1 0 = t A B 1
133 109 130 132 3eqtrd φ dt A B t X d t = t A B 1
134 oveq2 s = t X X + s = X + t - X
135 134 fveq2d s = t X F X + s = F X + t - X
136 oveq1 t = A t X = A X
137 oveq1 t = B t X = B X
138 1 2 3 56 85 102 133 135 136 137 33 34 itgsubsticc φ A X B X F X + s ds = A B F X + t - X 1 dt
139 124 115 pncan3d φ t A B X + t - X = t
140 139 fveq2d φ t A B F X + t - X = F t
141 140 oveq1d φ t A B F X + t - X 1 = F t 1
142 cncff F : A B cn F : A B
143 5 142 syl φ F : A B
144 143 adantr φ t A B F : A B
145 ioossicc A B A B
146 145 sseli t A B t A B
147 146 adantl φ t A B t A B
148 144 147 ffvelrnd φ t A B F t
149 148 mulid1d φ t A B F t 1 = F t
150 141 149 eqtrd φ t A B F X + t - X 1 = F t
151 3 150 ditgeq3d φ A B F X + t - X 1 dt = A B F t dt
152 138 151 eqtrd φ A X B X F X + s ds = A B F t dt