Metamath Proof Explorer


Theorem itgsplit

Description: The S. integral splits under an almost disjoint union. (Contributed by Mario Carneiro, 11-Aug-2014)

Ref Expression
Hypotheses itgsplit.i φ vol * A B = 0
itgsplit.u φ U = A B
itgsplit.c φ x U C V
itgsplit.a φ x A C 𝐿 1
itgsplit.b φ x B C 𝐿 1
Assertion itgsplit φ U C dx = A C dx + B C dx

Proof

Step Hyp Ref Expression
1 itgsplit.i φ vol * A B = 0
2 itgsplit.u φ U = A B
3 itgsplit.c φ x U C V
4 itgsplit.a φ x A C 𝐿 1
5 itgsplit.b φ x B C 𝐿 1
6 iblmbf x A C 𝐿 1 x A C MblFn
7 4 6 syl φ x A C MblFn
8 ssun1 A A B
9 8 2 sseqtrrid φ A U
10 9 sselda φ x A x U
11 10 3 syldan φ x A C V
12 7 11 mbfdm2 φ A dom vol
13 12 adantr φ k 0 3 A dom vol
14 iblmbf x B C 𝐿 1 x B C MblFn
15 5 14 syl φ x B C MblFn
16 ssun2 B A B
17 16 2 sseqtrrid φ B U
18 17 sselda φ x B x U
19 18 3 syldan φ x B C V
20 15 19 mbfdm2 φ B dom vol
21 20 adantr φ k 0 3 B dom vol
22 1 adantr φ k 0 3 vol * A B = 0
23 2 adantr φ k 0 3 U = A B
24 2 eleq2d φ x U x A B
25 elun x A B x A x B
26 24 25 bitrdi φ x U x A x B
27 26 biimpa φ x U x A x B
28 7 11 mbfmptcl φ x A C
29 15 19 mbfmptcl φ x B C
30 28 29 jaodan φ x A x B C
31 27 30 syldan φ x U C
32 31 adantlr φ k 0 3 x U C
33 ax-icn i
34 elfznn0 k 0 3 k 0
35 34 adantl φ k 0 3 k 0
36 expcl i k 0 i k
37 33 35 36 sylancr φ k 0 3 i k
38 37 adantr φ k 0 3 x U i k
39 ine0 i 0
40 elfzelz k 0 3 k
41 40 adantl φ k 0 3 k
42 expne0i i i 0 k i k 0
43 33 39 41 42 mp3an12i φ k 0 3 i k 0
44 43 adantr φ k 0 3 x U i k 0
45 32 38 44 divcld φ k 0 3 x U C i k
46 45 recld φ k 0 3 x U C i k
47 0re 0
48 ifcl C i k 0 if 0 C i k C i k 0
49 46 47 48 sylancl φ k 0 3 x U if 0 C i k C i k 0
50 49 rexrd φ k 0 3 x U if 0 C i k C i k 0 *
51 max1 0 C i k 0 if 0 C i k C i k 0
52 47 46 51 sylancr φ k 0 3 x U 0 if 0 C i k C i k 0
53 elxrge0 if 0 C i k C i k 0 0 +∞ if 0 C i k C i k 0 * 0 if 0 C i k C i k 0
54 50 52 53 sylanbrc φ k 0 3 x U if 0 C i k C i k 0 0 +∞
55 ifan if x A 0 C i k C i k 0 = if x A if 0 C i k C i k 0 0
56 55 mpteq2i x if x A 0 C i k C i k 0 = x if x A if 0 C i k C i k 0 0
57 ifan if x B 0 C i k C i k 0 = if x B if 0 C i k C i k 0 0
58 57 mpteq2i x if x B 0 C i k C i k 0 = x if x B if 0 C i k C i k 0 0
59 ifan if x U 0 C i k C i k 0 = if x U if 0 C i k C i k 0 0
60 59 mpteq2i x if x U 0 C i k C i k 0 = x if x U if 0 C i k C i k 0 0
61 eqidd φ x if x A 0 C i k C i k 0 = x if x A 0 C i k C i k 0
62 eqidd φ x A C i k = C i k
63 61 62 4 11 iblitg φ k 2 x if x A 0 C i k C i k 0
64 40 63 sylan2 φ k 0 3 2 x if x A 0 C i k C i k 0
65 eqidd φ x if x B 0 C i k C i k 0 = x if x B 0 C i k C i k 0
66 eqidd φ x B C i k = C i k
67 65 66 5 19 iblitg φ k 2 x if x B 0 C i k C i k 0
68 40 67 sylan2 φ k 0 3 2 x if x B 0 C i k C i k 0
69 13 21 22 23 54 56 58 60 64 68 itg2split φ k 0 3 2 x if x U 0 C i k C i k 0 = 2 x if x A 0 C i k C i k 0 + 2 x if x B 0 C i k C i k 0
70 69 oveq2d φ k 0 3 i k 2 x if x U 0 C i k C i k 0 = i k 2 x if x A 0 C i k C i k 0 + 2 x if x B 0 C i k C i k 0
71 63 recnd φ k 2 x if x A 0 C i k C i k 0
72 40 71 sylan2 φ k 0 3 2 x if x A 0 C i k C i k 0
73 68 recnd φ k 0 3 2 x if x B 0 C i k C i k 0
74 37 72 73 adddid φ k 0 3 i k 2 x if x A 0 C i k C i k 0 + 2 x if x B 0 C i k C i k 0 = i k 2 x if x A 0 C i k C i k 0 + i k 2 x if x B 0 C i k C i k 0
75 70 74 eqtrd φ k 0 3 i k 2 x if x U 0 C i k C i k 0 = i k 2 x if x A 0 C i k C i k 0 + i k 2 x if x B 0 C i k C i k 0
76 75 sumeq2dv φ k = 0 3 i k 2 x if x U 0 C i k C i k 0 = k = 0 3 i k 2 x if x A 0 C i k C i k 0 + i k 2 x if x B 0 C i k C i k 0
77 fzfid φ 0 3 Fin
78 37 72 mulcld φ k 0 3 i k 2 x if x A 0 C i k C i k 0
79 37 73 mulcld φ k 0 3 i k 2 x if x B 0 C i k C i k 0
80 77 78 79 fsumadd φ k = 0 3 i k 2 x if x A 0 C i k C i k 0 + i k 2 x if x B 0 C i k C i k 0 = k = 0 3 i k 2 x if x A 0 C i k C i k 0 + k = 0 3 i k 2 x if x B 0 C i k C i k 0
81 76 80 eqtrd φ k = 0 3 i k 2 x if x U 0 C i k C i k 0 = k = 0 3 i k 2 x if x A 0 C i k C i k 0 + k = 0 3 i k 2 x if x B 0 C i k C i k 0
82 eqid C i k = C i k
83 82 dfitg U C dx = k = 0 3 i k 2 x if x U 0 C i k C i k 0
84 82 dfitg A C dx = k = 0 3 i k 2 x if x A 0 C i k C i k 0
85 82 dfitg B C dx = k = 0 3 i k 2 x if x B 0 C i k C i k 0
86 84 85 oveq12i A C dx + B C dx = k = 0 3 i k 2 x if x A 0 C i k C i k 0 + k = 0 3 i k 2 x if x B 0 C i k C i k 0
87 81 83 86 3eqtr4g φ U C dx = A C dx + B C dx