Step |
Hyp |
Ref |
Expression |
1 |
|
itgsplit.i |
|
2 |
|
itgsplit.u |
|
3 |
|
itgsplit.c |
|
4 |
|
itgsplit.a |
|
5 |
|
itgsplit.b |
|
6 |
|
iblmbf |
|
7 |
4 6
|
syl |
|
8 |
|
ssun1 |
|
9 |
8 2
|
sseqtrrid |
|
10 |
9
|
sselda |
|
11 |
10 3
|
syldan |
|
12 |
7 11
|
mbfdm2 |
|
13 |
12
|
adantr |
|
14 |
|
iblmbf |
|
15 |
5 14
|
syl |
|
16 |
|
ssun2 |
|
17 |
16 2
|
sseqtrrid |
|
18 |
17
|
sselda |
|
19 |
18 3
|
syldan |
|
20 |
15 19
|
mbfdm2 |
|
21 |
20
|
adantr |
|
22 |
1
|
adantr |
|
23 |
2
|
adantr |
|
24 |
2
|
eleq2d |
|
25 |
|
elun |
|
26 |
24 25
|
bitrdi |
|
27 |
26
|
biimpa |
|
28 |
7 11
|
mbfmptcl |
|
29 |
15 19
|
mbfmptcl |
|
30 |
28 29
|
jaodan |
|
31 |
27 30
|
syldan |
|
32 |
31
|
adantlr |
|
33 |
|
ax-icn |
|
34 |
|
elfznn0 |
|
35 |
34
|
adantl |
|
36 |
|
expcl |
|
37 |
33 35 36
|
sylancr |
|
38 |
37
|
adantr |
|
39 |
|
ine0 |
|
40 |
|
elfzelz |
|
41 |
40
|
adantl |
|
42 |
|
expne0i |
|
43 |
33 39 41 42
|
mp3an12i |
|
44 |
43
|
adantr |
|
45 |
32 38 44
|
divcld |
|
46 |
45
|
recld |
|
47 |
|
0re |
|
48 |
|
ifcl |
|
49 |
46 47 48
|
sylancl |
|
50 |
49
|
rexrd |
|
51 |
|
max1 |
|
52 |
47 46 51
|
sylancr |
|
53 |
|
elxrge0 |
|
54 |
50 52 53
|
sylanbrc |
|
55 |
|
ifan |
|
56 |
55
|
mpteq2i |
|
57 |
|
ifan |
|
58 |
57
|
mpteq2i |
|
59 |
|
ifan |
|
60 |
59
|
mpteq2i |
|
61 |
|
eqidd |
|
62 |
|
eqidd |
|
63 |
61 62 4 11
|
iblitg |
|
64 |
40 63
|
sylan2 |
|
65 |
|
eqidd |
|
66 |
|
eqidd |
|
67 |
65 66 5 19
|
iblitg |
|
68 |
40 67
|
sylan2 |
|
69 |
13 21 22 23 54 56 58 60 64 68
|
itg2split |
|
70 |
69
|
oveq2d |
|
71 |
63
|
recnd |
|
72 |
40 71
|
sylan2 |
|
73 |
68
|
recnd |
|
74 |
37 72 73
|
adddid |
|
75 |
70 74
|
eqtrd |
|
76 |
75
|
sumeq2dv |
|
77 |
|
fzfid |
|
78 |
37 72
|
mulcld |
|
79 |
37 73
|
mulcld |
|
80 |
77 78 79
|
fsumadd |
|
81 |
76 80
|
eqtrd |
|
82 |
|
eqid |
|
83 |
82
|
dfitg |
|
84 |
82
|
dfitg |
|
85 |
82
|
dfitg |
|
86 |
84 85
|
oveq12i |
|
87 |
81 83 86
|
3eqtr4g |
|