| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgss.1 |
|
| 2 |
|
itgss.2 |
|
| 3 |
|
elfzelz |
|
| 4 |
|
iffalse |
|
| 5 |
4
|
ad2antll |
|
| 6 |
|
eldif |
|
| 7 |
2
|
adantlr |
|
| 8 |
7
|
oveq1d |
|
| 9 |
|
ax-icn |
|
| 10 |
|
ine0 |
|
| 11 |
|
expclz |
|
| 12 |
9 10 11
|
mp3an12 |
|
| 13 |
|
expne0i |
|
| 14 |
9 10 13
|
mp3an12 |
|
| 15 |
12 14
|
div0d |
|
| 16 |
15
|
ad2antlr |
|
| 17 |
8 16
|
eqtrd |
|
| 18 |
17
|
fveq2d |
|
| 19 |
|
re0 |
|
| 20 |
18 19
|
eqtrdi |
|
| 21 |
20
|
ifeq1d |
|
| 22 |
|
ifid |
|
| 23 |
21 22
|
eqtrdi |
|
| 24 |
6 23
|
sylan2br |
|
| 25 |
5 24
|
eqtr4d |
|
| 26 |
25
|
expr |
|
| 27 |
|
iftrue |
|
| 28 |
26 27
|
pm2.61d2 |
|
| 29 |
|
iftrue |
|
| 30 |
29
|
adantl |
|
| 31 |
28 30
|
eqtr4d |
|
| 32 |
1
|
adantr |
|
| 33 |
32
|
sseld |
|
| 34 |
33
|
con3dimp |
|
| 35 |
34 4
|
syl |
|
| 36 |
|
iffalse |
|
| 37 |
36
|
adantl |
|
| 38 |
35 37
|
eqtr4d |
|
| 39 |
31 38
|
pm2.61dan |
|
| 40 |
|
ifan |
|
| 41 |
|
ifan |
|
| 42 |
39 40 41
|
3eqtr4g |
|
| 43 |
42
|
mpteq2dv |
|
| 44 |
43
|
fveq2d |
|
| 45 |
44
|
oveq2d |
|
| 46 |
3 45
|
sylan2 |
|
| 47 |
46
|
sumeq2dv |
|
| 48 |
|
eqid |
|
| 49 |
48
|
dfitg |
|
| 50 |
48
|
dfitg |
|
| 51 |
47 49 50
|
3eqtr4g |
|