Step |
Hyp |
Ref |
Expression |
1 |
|
itgss.1 |
|
2 |
|
itgss.2 |
|
3 |
|
elfzelz |
|
4 |
|
iffalse |
|
5 |
4
|
ad2antll |
|
6 |
|
eldif |
|
7 |
2
|
adantlr |
|
8 |
7
|
oveq1d |
|
9 |
|
ax-icn |
|
10 |
|
ine0 |
|
11 |
|
expclz |
|
12 |
9 10 11
|
mp3an12 |
|
13 |
|
expne0i |
|
14 |
9 10 13
|
mp3an12 |
|
15 |
12 14
|
div0d |
|
16 |
15
|
ad2antlr |
|
17 |
8 16
|
eqtrd |
|
18 |
17
|
fveq2d |
|
19 |
|
re0 |
|
20 |
18 19
|
eqtrdi |
|
21 |
20
|
ifeq1d |
|
22 |
|
ifid |
|
23 |
21 22
|
eqtrdi |
|
24 |
6 23
|
sylan2br |
|
25 |
5 24
|
eqtr4d |
|
26 |
25
|
expr |
|
27 |
|
iftrue |
|
28 |
26 27
|
pm2.61d2 |
|
29 |
|
iftrue |
|
30 |
29
|
adantl |
|
31 |
28 30
|
eqtr4d |
|
32 |
1
|
adantr |
|
33 |
32
|
sseld |
|
34 |
33
|
con3dimp |
|
35 |
34 4
|
syl |
|
36 |
|
iffalse |
|
37 |
36
|
adantl |
|
38 |
35 37
|
eqtr4d |
|
39 |
31 38
|
pm2.61dan |
|
40 |
|
ifan |
|
41 |
|
ifan |
|
42 |
39 40 41
|
3eqtr4g |
|
43 |
42
|
mpteq2dv |
|
44 |
43
|
fveq2d |
|
45 |
44
|
oveq2d |
|
46 |
3 45
|
sylan2 |
|
47 |
46
|
sumeq2dv |
|
48 |
|
eqid |
|
49 |
48
|
dfitg |
|
50 |
48
|
dfitg |
|
51 |
47 49 50
|
3eqtr4g |
|