Metamath Proof Explorer


Theorem itgss

Description: Expand the set of an integral by adding zeroes outside the domain. (Contributed by Mario Carneiro, 11-Aug-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses itgss.1 φ A B
itgss.2 φ x B A C = 0
Assertion itgss φ A C dx = B C dx

Proof

Step Hyp Ref Expression
1 itgss.1 φ A B
2 itgss.2 φ x B A C = 0
3 elfzelz k 0 3 k
4 iffalse ¬ x A if x A if 0 C i k C i k 0 0 = 0
5 4 ad2antll φ k x B ¬ x A if x A if 0 C i k C i k 0 0 = 0
6 eldif x B A x B ¬ x A
7 2 adantlr φ k x B A C = 0
8 7 oveq1d φ k x B A C i k = 0 i k
9 ax-icn i
10 ine0 i 0
11 expclz i i 0 k i k
12 9 10 11 mp3an12 k i k
13 expne0i i i 0 k i k 0
14 9 10 13 mp3an12 k i k 0
15 12 14 div0d k 0 i k = 0
16 15 ad2antlr φ k x B A 0 i k = 0
17 8 16 eqtrd φ k x B A C i k = 0
18 17 fveq2d φ k x B A C i k = 0
19 re0 0 = 0
20 18 19 eqtrdi φ k x B A C i k = 0
21 20 ifeq1d φ k x B A if 0 C i k C i k 0 = if 0 C i k 0 0
22 ifid if 0 C i k 0 0 = 0
23 21 22 eqtrdi φ k x B A if 0 C i k C i k 0 = 0
24 6 23 sylan2br φ k x B ¬ x A if 0 C i k C i k 0 = 0
25 5 24 eqtr4d φ k x B ¬ x A if x A if 0 C i k C i k 0 0 = if 0 C i k C i k 0
26 25 expr φ k x B ¬ x A if x A if 0 C i k C i k 0 0 = if 0 C i k C i k 0
27 iftrue x A if x A if 0 C i k C i k 0 0 = if 0 C i k C i k 0
28 26 27 pm2.61d2 φ k x B if x A if 0 C i k C i k 0 0 = if 0 C i k C i k 0
29 iftrue x B if x B if 0 C i k C i k 0 0 = if 0 C i k C i k 0
30 29 adantl φ k x B if x B if 0 C i k C i k 0 0 = if 0 C i k C i k 0
31 28 30 eqtr4d φ k x B if x A if 0 C i k C i k 0 0 = if x B if 0 C i k C i k 0 0
32 1 adantr φ k A B
33 32 sseld φ k x A x B
34 33 con3dimp φ k ¬ x B ¬ x A
35 34 4 syl φ k ¬ x B if x A if 0 C i k C i k 0 0 = 0
36 iffalse ¬ x B if x B if 0 C i k C i k 0 0 = 0
37 36 adantl φ k ¬ x B if x B if 0 C i k C i k 0 0 = 0
38 35 37 eqtr4d φ k ¬ x B if x A if 0 C i k C i k 0 0 = if x B if 0 C i k C i k 0 0
39 31 38 pm2.61dan φ k if x A if 0 C i k C i k 0 0 = if x B if 0 C i k C i k 0 0
40 ifan if x A 0 C i k C i k 0 = if x A if 0 C i k C i k 0 0
41 ifan if x B 0 C i k C i k 0 = if x B if 0 C i k C i k 0 0
42 39 40 41 3eqtr4g φ k if x A 0 C i k C i k 0 = if x B 0 C i k C i k 0
43 42 mpteq2dv φ k x if x A 0 C i k C i k 0 = x if x B 0 C i k C i k 0
44 43 fveq2d φ k 2 x if x A 0 C i k C i k 0 = 2 x if x B 0 C i k C i k 0
45 44 oveq2d φ k i k 2 x if x A 0 C i k C i k 0 = i k 2 x if x B 0 C i k C i k 0
46 3 45 sylan2 φ k 0 3 i k 2 x if x A 0 C i k C i k 0 = i k 2 x if x B 0 C i k C i k 0
47 46 sumeq2dv φ k = 0 3 i k 2 x if x A 0 C i k C i k 0 = k = 0 3 i k 2 x if x B 0 C i k C i k 0
48 eqid C i k = C i k
49 48 dfitg A C dx = k = 0 3 i k 2 x if x A 0 C i k C i k 0
50 48 dfitg B C dx = k = 0 3 i k 2 x if x B 0 C i k C i k 0
51 47 49 50 3eqtr4g φ A C dx = B C dx