Metamath Proof Explorer


Theorem itgss2

Description: Expand the set of an integral by adding zeroes outside the domain. (Contributed by Mario Carneiro, 11-Aug-2014)

Ref Expression
Assertion itgss2 A B A C dx = B if x A C 0 dx

Proof

Step Hyp Ref Expression
1 iftrue x A if x A C 0 = C
2 1 adantl A B x A if x A C 0 = C
3 2 itgeq2dv A B A if x A C 0 dx = A C dx
4 id A B A B
5 eldifn x B A ¬ x A
6 5 iffalsed x B A if x A C 0 = 0
7 6 adantl A B x B A if x A C 0 = 0
8 4 7 itgss A B A if x A C 0 dx = B if x A C 0 dx
9 3 8 eqtr3d A B A C dx = B if x A C 0 dx