Step |
Hyp |
Ref |
Expression |
1 |
|
itgss3.1 |
|
2 |
|
itgss3.2 |
|
3 |
|
itgss3.3 |
|
4 |
|
itgss3.4 |
|
5 |
|
nfcv |
|
6 |
|
nfv |
|
7 |
|
nfcsb1v |
|
8 |
|
nfcv |
|
9 |
6 7 8
|
nfif |
|
10 |
|
eleq1w |
|
11 |
|
csbeq1a |
|
12 |
10 11
|
ifbieq1d |
|
13 |
5 9 12
|
cbvmpt |
|
14 |
1
|
adantr |
|
15 |
|
nfcv |
|
16 |
15 7 11
|
cbvmpt |
|
17 |
|
iftrue |
|
18 |
17
|
mpteq2ia |
|
19 |
16 18
|
eqtr4i |
|
20 |
|
simpr |
|
21 |
19 20
|
eqeltrrid |
|
22 |
|
iblmbf |
|
23 |
21 22
|
syl |
|
24 |
1
|
sselda |
|
25 |
24 4
|
syldan |
|
26 |
25
|
fmpttd |
|
27 |
26
|
adantr |
|
28 |
19
|
feq1i |
|
29 |
27 28
|
sylib |
|
30 |
29
|
fvmptelrn |
|
31 |
23 30
|
mbfdm2 |
|
32 |
|
undif |
|
33 |
1 32
|
sylib |
|
34 |
33
|
adantr |
|
35 |
|
id |
|
36 |
2
|
ssdifssd |
|
37 |
|
nulmbl |
|
38 |
36 3 37
|
syl2anc |
|
39 |
|
unmbl |
|
40 |
35 38 39
|
syl2anr |
|
41 |
34 40
|
eqeltrrd |
|
42 |
31 41
|
syldan |
|
43 |
|
eldifn |
|
44 |
43
|
adantl |
|
45 |
44
|
iffalsed |
|
46 |
14 42 30 45 21
|
iblss2 |
|
47 |
13 46
|
eqeltrid |
|
48 |
|
iftrue |
|
49 |
48
|
mpteq2ia |
|
50 |
5 9 12
|
cbvmpt |
|
51 |
49 50
|
eqtr3i |
|
52 |
1
|
adantr |
|
53 |
|
simpr |
|
54 |
13 53
|
eqeltrrid |
|
55 |
|
iblmbf |
|
56 |
54 55
|
syl |
|
57 |
|
0cn |
|
58 |
|
ifcl |
|
59 |
4 57 58
|
sylancl |
|
60 |
59
|
fmpttd |
|
61 |
13
|
feq1i |
|
62 |
60 61
|
sylib |
|
63 |
62
|
adantr |
|
64 |
63
|
fvmptelrn |
|
65 |
56 64
|
mbfdm2 |
|
66 |
|
dfss4 |
|
67 |
1 66
|
sylib |
|
68 |
67
|
adantr |
|
69 |
|
id |
|
70 |
|
difmbl |
|
71 |
69 38 70
|
syl2anr |
|
72 |
68 71
|
eqeltrrd |
|
73 |
65 72
|
syldan |
|
74 |
52 73 64 54
|
iblss |
|
75 |
51 74
|
eqeltrid |
|
76 |
47 75
|
impbida |
|
77 |
67
|
eleq2d |
|
78 |
77
|
biimpa |
|
79 |
78 48
|
syl |
|
80 |
59 4 36 3 79
|
itgeqa |
|
81 |
80
|
simpld |
|
82 |
76 81
|
bitrd |
|
83 |
|
itgss2 |
|
84 |
1 83
|
syl |
|
85 |
80
|
simprd |
|
86 |
84 85
|
eqtrd |
|
87 |
82 86
|
jca |
|