Metamath Proof Explorer


Theorem itgsub

Description: Subtract two integrals over the same domain. (Contributed by Mario Carneiro, 25-Aug-2014)

Ref Expression
Hypotheses itgadd.1 φ x A B V
itgadd.2 φ x A B 𝐿 1
itgadd.3 φ x A C V
itgadd.4 φ x A C 𝐿 1
Assertion itgsub φ A B C dx = A B dx A C dx

Proof

Step Hyp Ref Expression
1 itgadd.1 φ x A B V
2 itgadd.2 φ x A B 𝐿 1
3 itgadd.3 φ x A C V
4 itgadd.4 φ x A C 𝐿 1
5 iblmbf x A B 𝐿 1 x A B MblFn
6 2 5 syl φ x A B MblFn
7 6 1 mbfmptcl φ x A B
8 iblmbf x A C 𝐿 1 x A C MblFn
9 4 8 syl φ x A C MblFn
10 9 3 mbfmptcl φ x A C
11 10 negcld φ x A C
12 3 4 iblneg φ x A C 𝐿 1
13 7 2 11 12 itgadd φ A B + C dx = A B dx + A C dx
14 3 4 itgneg φ A C dx = A C dx
15 14 oveq2d φ A B dx + A C dx = A B dx + A C dx
16 13 15 eqtr4d φ A B + C dx = A B dx + A C dx
17 7 10 negsubd φ x A B + C = B C
18 17 itgeq2dv φ A B + C dx = A B C dx
19 1 2 itgcl φ A B dx
20 3 4 itgcl φ A C dx
21 19 20 negsubd φ A B dx + A C dx = A B dx A C dx
22 16 18 21 3eqtr3d φ A B C dx = A B dx A C dx