Metamath Proof Explorer


Theorem itgsubsticc

Description: Integration by u-substitution. The main difference with respect to itgsubst is that here we consider the range of A ( x ) to be in the closed interval ( K , L ) . If A ( x ) is a continuous, differentiable function from [ X , Y ] to ( Z , W ) , whose derivative is continuous and integrable, and C ( u ) is a continuous function on ( Z , W ) , then the integral of C ( u ) from K = A ( X ) to L = A ( Y ) is equal to the integral of C ( A ( x ) ) _D A ( x ) from X to Y . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses itgsubsticc.1 φ X
itgsubsticc.2 φ Y
itgsubsticc.3 φ X Y
itgsubsticc.4 φ x X Y A : X Y cn K L
itgsubsticc.5 φ u K L C : K L cn
itgsubsticc.6 φ x X Y B X Y cn 𝐿 1
itgsubsticc.7 φ dx X Y A d x = x X Y B
itgsubsticc.8 u = A C = E
itgsubsticc.9 x = X A = K
itgsubsticc.10 x = Y A = L
itgsubsticc.11 φ K
itgsubsticc.12 φ L
Assertion itgsubsticc φ K L C du = X Y E B dx

Proof

Step Hyp Ref Expression
1 itgsubsticc.1 φ X
2 itgsubsticc.2 φ Y
3 itgsubsticc.3 φ X Y
4 itgsubsticc.4 φ x X Y A : X Y cn K L
5 itgsubsticc.5 φ u K L C : K L cn
6 itgsubsticc.6 φ x X Y B X Y cn 𝐿 1
7 itgsubsticc.7 φ dx X Y A d x = x X Y B
8 itgsubsticc.8 u = A C = E
9 itgsubsticc.9 x = X A = K
10 itgsubsticc.10 x = Y A = L
11 itgsubsticc.11 φ K
12 itgsubsticc.12 φ L
13 eqid u K L C = u K L C
14 eqid u if u K L u K L C u if u < K u K L C K u K L C L = u if u K L u K L C u if u < K u K L C K u K L C L
15 eqidd φ x X Y A = x X Y A
16 10 adantl φ x = Y A = L
17 1 rexrd φ X *
18 2 rexrd φ Y *
19 ubicc2 X * Y * X Y Y X Y
20 17 18 3 19 syl3anc φ Y X Y
21 15 16 20 12 fvmptd φ x X Y A Y = L
22 cncff x X Y A : X Y cn K L x X Y A : X Y K L
23 4 22 syl φ x X Y A : X Y K L
24 23 20 ffvelrnd φ x X Y A Y K L
25 21 24 eqeltrrd φ L K L
26 elicc2 K L L K L L K L L L
27 11 12 26 syl2anc φ L K L L K L L L
28 25 27 mpbid φ L K L L L
29 28 simp2d φ K L
30 13 14 1 2 3 4 6 5 11 12 29 7 8 9 10 itgsubsticclem φ K L C du = X Y E B dx