Step |
Hyp |
Ref |
Expression |
1 |
|
itgulm.z |
|
2 |
|
itgulm.m |
|
3 |
|
itgulm.f |
|
4 |
|
itgulm.u |
|
5 |
|
itgulm.s |
|
6 |
2
|
adantr |
|
7 |
3
|
ffnd |
|
8 |
|
ulmf2 |
|
9 |
7 4 8
|
syl2anc |
|
10 |
9
|
adantr |
|
11 |
|
eqidd |
|
12 |
|
eqidd |
|
13 |
4
|
adantr |
|
14 |
|
simpr |
|
15 |
5
|
adantr |
|
16 |
|
ulmcl |
|
17 |
|
fdm |
|
18 |
4 16 17
|
3syl |
|
19 |
1 2 3 4 5
|
iblulm |
|
20 |
|
iblmbf |
|
21 |
|
mbfdm |
|
22 |
19 20 21
|
3syl |
|
23 |
18 22
|
eqeltrrd |
|
24 |
|
mblss |
|
25 |
|
ovolge0 |
|
26 |
23 24 25
|
3syl |
|
27 |
|
mblvol |
|
28 |
23 27
|
syl |
|
29 |
26 28
|
breqtrrd |
|
30 |
29
|
adantr |
|
31 |
15 30
|
ge0p1rpd |
|
32 |
14 31
|
rpdivcld |
|
33 |
1 6 10 11 12 13 32
|
ulmi |
|
34 |
1
|
uztrn2 |
|
35 |
9
|
ffvelrnda |
|
36 |
|
elmapi |
|
37 |
35 36
|
syl |
|
38 |
37
|
ffvelrnda |
|
39 |
38
|
adantllr |
|
40 |
39
|
adantlrr |
|
41 |
37
|
feqmptd |
|
42 |
3
|
ffvelrnda |
|
43 |
41 42
|
eqeltrrd |
|
44 |
43
|
ad2ant2r |
|
45 |
4 16
|
syl |
|
46 |
45
|
ffvelrnda |
|
47 |
46
|
ad4ant14 |
|
48 |
45
|
feqmptd |
|
49 |
48 19
|
eqeltrrd |
|
50 |
49
|
ad2antrr |
|
51 |
40 44 47 50
|
itgsub |
|
52 |
51
|
fveq2d |
|
53 |
40 47
|
subcld |
|
54 |
40 44 47 50
|
iblsub |
|
55 |
53 54
|
itgcl |
|
56 |
55
|
abscld |
|
57 |
53
|
abscld |
|
58 |
53 54
|
iblabs |
|
59 |
57 58
|
itgrecl |
|
60 |
|
rpre |
|
61 |
60
|
ad2antlr |
|
62 |
53 54
|
itgabs |
|
63 |
32
|
adantr |
|
64 |
63
|
rpred |
|
65 |
5
|
ad2antrr |
|
66 |
64 65
|
remulcld |
|
67 |
|
fconstmpt |
|
68 |
23
|
ad2antrr |
|
69 |
63
|
rpcnd |
|
70 |
|
iblconst |
|
71 |
68 65 69 70
|
syl3anc |
|
72 |
67 71
|
eqeltrrid |
|
73 |
64
|
adantr |
|
74 |
|
simprr |
|
75 |
|
fveq2 |
|
76 |
|
fveq2 |
|
77 |
75 76
|
oveq12d |
|
78 |
77
|
fveq2d |
|
79 |
78
|
breq1d |
|
80 |
79
|
rspccva |
|
81 |
74 80
|
sylan |
|
82 |
57 73 81
|
ltled |
|
83 |
58 72 57 73 82
|
itgle |
|
84 |
|
itgconst |
|
85 |
68 65 69 84
|
syl3anc |
|
86 |
83 85
|
breqtrd |
|
87 |
61
|
recnd |
|
88 |
65
|
recnd |
|
89 |
31
|
adantr |
|
90 |
89
|
rpcnd |
|
91 |
89
|
rpne0d |
|
92 |
87 88 90 91
|
div23d |
|
93 |
65
|
ltp1d |
|
94 |
|
peano2re |
|
95 |
65 94
|
syl |
|
96 |
|
rpgt0 |
|
97 |
96
|
ad2antlr |
|
98 |
|
ltmul2 |
|
99 |
65 95 61 97 98
|
syl112anc |
|
100 |
93 99
|
mpbid |
|
101 |
61 65
|
remulcld |
|
102 |
101 61 89
|
ltdivmul2d |
|
103 |
100 102
|
mpbird |
|
104 |
92 103
|
eqbrtrrd |
|
105 |
59 66 61 86 104
|
lelttrd |
|
106 |
56 59 61 62 105
|
lelttrd |
|
107 |
52 106
|
eqbrtrrd |
|
108 |
107
|
expr |
|
109 |
34 108
|
sylan2 |
|
110 |
109
|
anassrs |
|
111 |
110
|
ralimdva |
|
112 |
111
|
reximdva |
|
113 |
33 112
|
mpd |
|
114 |
113
|
ralrimiva |
|
115 |
1
|
fvexi |
|
116 |
115
|
mptex |
|
117 |
116
|
a1i |
|
118 |
|
fveq2 |
|
119 |
118
|
fveq1d |
|
120 |
119
|
adantr |
|
121 |
120
|
itgeq2dv |
|
122 |
|
eqid |
|
123 |
|
itgex |
|
124 |
121 122 123
|
fvmpt |
|
125 |
124
|
adantl |
|
126 |
46 49
|
itgcl |
|
127 |
38 43
|
itgcl |
|
128 |
1 2 117 125 126 127
|
clim2c |
|
129 |
114 128
|
mpbird |
|