Metamath Proof Explorer


Theorem itgulm2

Description: A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015)

Ref Expression
Hypotheses itgulm2.z Z = M
itgulm2.m φ M
itgulm2.l φ k Z x S A 𝐿 1
itgulm2.u φ k Z x S A u S x S B
itgulm2.s φ vol S
Assertion itgulm2 φ x S B 𝐿 1 k Z S A dx S B dx

Proof

Step Hyp Ref Expression
1 itgulm2.z Z = M
2 itgulm2.m φ M
3 itgulm2.l φ k Z x S A 𝐿 1
4 itgulm2.u φ k Z x S A u S x S B
5 itgulm2.s φ vol S
6 3 fmpttd φ k Z x S A : Z 𝐿 1
7 1 2 6 4 5 iblulm φ x S B 𝐿 1
8 1 2 6 4 5 itgulm φ n Z S k Z x S A n z dz S x S B z dz
9 nfcv _ k S
10 nffvmpt1 _ k k Z x S A n
11 nfcv _ k z
12 10 11 nffv _ k k Z x S A n z
13 9 12 nfitg _ k S k Z x S A n z dz
14 nfcv _ n S k Z x S A k x dx
15 fveq2 z = x k Z x S A n z = k Z x S A n x
16 nfcv _ x Z
17 nfmpt1 _ x x S A
18 16 17 nfmpt _ x k Z x S A
19 nfcv _ x n
20 18 19 nffv _ x k Z x S A n
21 nfcv _ x z
22 20 21 nffv _ x k Z x S A n z
23 nfcv _ z k Z x S A n x
24 15 22 23 cbvitg S k Z x S A n z dz = S k Z x S A n x dx
25 fveq2 n = k k Z x S A n = k Z x S A k
26 25 fveq1d n = k k Z x S A n x = k Z x S A k x
27 26 adantr n = k x S k Z x S A n x = k Z x S A k x
28 27 itgeq2dv n = k S k Z x S A n x dx = S k Z x S A k x dx
29 24 28 syl5eq n = k S k Z x S A n z dz = S k Z x S A k x dx
30 13 14 29 cbvmpt n Z S k Z x S A n z dz = k Z S k Z x S A k x dx
31 simplr φ k Z x S k Z
32 ulmscl k Z x S A u S x S B S V
33 mptexg S V x S A V
34 4 32 33 3syl φ x S A V
35 34 ad2antrr φ k Z x S x S A V
36 eqid k Z x S A = k Z x S A
37 36 fvmpt2 k Z x S A V k Z x S A k = x S A
38 31 35 37 syl2anc φ k Z x S k Z x S A k = x S A
39 38 fveq1d φ k Z x S k Z x S A k x = x S A x
40 simpr φ k Z x S x S
41 34 ralrimivw φ k Z x S A V
42 36 fnmpt k Z x S A V k Z x S A Fn Z
43 41 42 syl φ k Z x S A Fn Z
44 ulmf2 k Z x S A Fn Z k Z x S A u S x S B k Z x S A : Z S
45 43 4 44 syl2anc φ k Z x S A : Z S
46 45 fvmptelrn φ k Z x S A S
47 elmapi x S A S x S A : S
48 46 47 syl φ k Z x S A : S
49 48 fvmptelrn φ k Z x S A
50 eqid x S A = x S A
51 50 fvmpt2 x S A x S A x = A
52 40 49 51 syl2anc φ k Z x S x S A x = A
53 39 52 eqtrd φ k Z x S k Z x S A k x = A
54 53 itgeq2dv φ k Z S k Z x S A k x dx = S A dx
55 54 mpteq2dva φ k Z S k Z x S A k x dx = k Z S A dx
56 30 55 syl5eq φ n Z S k Z x S A n z dz = k Z S A dx
57 fveq2 z = x x S B z = x S B x
58 nffvmpt1 _ x x S B z
59 nfcv _ z x S B x
60 57 58 59 cbvitg S x S B z dz = S x S B x dx
61 simpr φ x S x S
62 ulmcl k Z x S A u S x S B x S B : S
63 4 62 syl φ x S B : S
64 63 fvmptelrn φ x S B
65 eqid x S B = x S B
66 65 fvmpt2 x S B x S B x = B
67 61 64 66 syl2anc φ x S x S B x = B
68 67 itgeq2dv φ S x S B x dx = S B dx
69 60 68 syl5eq φ S x S B z dz = S B dx
70 8 56 69 3brtr3d φ k Z S A dx S B dx
71 7 70 jca φ x S B 𝐿 1 k Z S A dx S B dx