| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgulm2.z |
|
| 2 |
|
itgulm2.m |
|
| 3 |
|
itgulm2.l |
|
| 4 |
|
itgulm2.u |
|
| 5 |
|
itgulm2.s |
|
| 6 |
3
|
fmpttd |
|
| 7 |
1 2 6 4 5
|
iblulm |
|
| 8 |
1 2 6 4 5
|
itgulm |
|
| 9 |
|
nfcv |
|
| 10 |
|
nffvmpt1 |
|
| 11 |
|
nfcv |
|
| 12 |
10 11
|
nffv |
|
| 13 |
9 12
|
nfitg |
|
| 14 |
|
nfcv |
|
| 15 |
|
fveq2 |
|
| 16 |
|
nfcv |
|
| 17 |
|
nfmpt1 |
|
| 18 |
16 17
|
nfmpt |
|
| 19 |
|
nfcv |
|
| 20 |
18 19
|
nffv |
|
| 21 |
|
nfcv |
|
| 22 |
20 21
|
nffv |
|
| 23 |
|
nfcv |
|
| 24 |
15 22 23
|
cbvitg |
|
| 25 |
|
fveq2 |
|
| 26 |
25
|
fveq1d |
|
| 27 |
26
|
adantr |
|
| 28 |
27
|
itgeq2dv |
|
| 29 |
24 28
|
eqtrid |
|
| 30 |
13 14 29
|
cbvmpt |
|
| 31 |
|
simplr |
|
| 32 |
|
ulmscl |
|
| 33 |
|
mptexg |
|
| 34 |
4 32 33
|
3syl |
|
| 35 |
34
|
ad2antrr |
|
| 36 |
|
eqid |
|
| 37 |
36
|
fvmpt2 |
|
| 38 |
31 35 37
|
syl2anc |
|
| 39 |
38
|
fveq1d |
|
| 40 |
|
simpr |
|
| 41 |
34
|
ralrimivw |
|
| 42 |
36
|
fnmpt |
|
| 43 |
41 42
|
syl |
|
| 44 |
|
ulmf2 |
|
| 45 |
43 4 44
|
syl2anc |
|
| 46 |
45
|
fvmptelcdm |
|
| 47 |
|
elmapi |
|
| 48 |
46 47
|
syl |
|
| 49 |
48
|
fvmptelcdm |
|
| 50 |
|
eqid |
|
| 51 |
50
|
fvmpt2 |
|
| 52 |
40 49 51
|
syl2anc |
|
| 53 |
39 52
|
eqtrd |
|
| 54 |
53
|
itgeq2dv |
|
| 55 |
54
|
mpteq2dva |
|
| 56 |
30 55
|
eqtrid |
|
| 57 |
|
fveq2 |
|
| 58 |
|
nffvmpt1 |
|
| 59 |
|
nfcv |
|
| 60 |
57 58 59
|
cbvitg |
|
| 61 |
|
simpr |
|
| 62 |
|
ulmcl |
|
| 63 |
4 62
|
syl |
|
| 64 |
63
|
fvmptelcdm |
|
| 65 |
|
eqid |
|
| 66 |
65
|
fvmpt2 |
|
| 67 |
61 64 66
|
syl2anc |
|
| 68 |
67
|
itgeq2dv |
|
| 69 |
60 68
|
eqtrid |
|
| 70 |
8 56 69
|
3brtr3d |
|
| 71 |
7 70
|
jca |
|