Metamath Proof Explorer


Theorem itgvallem

Description: Substitution lemma. (Contributed by Mario Carneiro, 7-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypothesis itgvallem.1 i K = T
Assertion itgvallem k = K 2 x if x A 0 B i k B i k 0 = 2 x if x A 0 B T B T 0

Proof

Step Hyp Ref Expression
1 itgvallem.1 i K = T
2 oveq2 k = K i k = i K
3 2 1 eqtrdi k = K i k = T
4 3 oveq2d k = K B i k = B T
5 4 fveq2d k = K B i k = B T
6 5 breq2d k = K 0 B i k 0 B T
7 6 anbi2d k = K x A 0 B i k x A 0 B T
8 7 5 ifbieq1d k = K if x A 0 B i k B i k 0 = if x A 0 B T B T 0
9 8 mpteq2dv k = K x if x A 0 B i k B i k 0 = x if x A 0 B T B T 0
10 9 fveq2d k = K 2 x if x A 0 B i k B i k 0 = 2 x if x A 0 B T B T 0