Metamath Proof Explorer


Theorem itgz

Description: The integral of zero on any set is zero. (Contributed by Mario Carneiro, 29-Jun-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Assertion itgz A 0 dx = 0

Proof

Step Hyp Ref Expression
1 eqid 0 i k = 0 i k
2 1 dfitg A 0 dx = k = 0 3 i k 2 x if x A 0 0 i k 0 i k 0
3 ax-icn i
4 elfznn0 k 0 3 k 0
5 expcl i k 0 i k
6 3 4 5 sylancr k 0 3 i k
7 ine0 i 0
8 elfzelz k 0 3 k
9 expne0i i i 0 k i k 0
10 3 7 8 9 mp3an12i k 0 3 i k 0
11 6 10 div0d k 0 3 0 i k = 0
12 11 fveq2d k 0 3 0 i k = 0
13 re0 0 = 0
14 12 13 eqtrdi k 0 3 0 i k = 0
15 14 ifeq1d k 0 3 if x A 0 0 i k 0 i k 0 = if x A 0 0 i k 0 0
16 ifid if x A 0 0 i k 0 0 = 0
17 15 16 eqtrdi k 0 3 if x A 0 0 i k 0 i k 0 = 0
18 17 mpteq2dv k 0 3 x if x A 0 0 i k 0 i k 0 = x 0
19 fconstmpt × 0 = x 0
20 18 19 eqtr4di k 0 3 x if x A 0 0 i k 0 i k 0 = × 0
21 20 fveq2d k 0 3 2 x if x A 0 0 i k 0 i k 0 = 2 × 0
22 itg20 2 × 0 = 0
23 21 22 eqtrdi k 0 3 2 x if x A 0 0 i k 0 i k 0 = 0
24 23 oveq2d k 0 3 i k 2 x if x A 0 0 i k 0 i k 0 = i k 0
25 6 mul01d k 0 3 i k 0 = 0
26 24 25 eqtrd k 0 3 i k 2 x if x A 0 0 i k 0 i k 0 = 0
27 26 sumeq2i k = 0 3 i k 2 x if x A 0 0 i k 0 i k 0 = k = 0 3 0
28 fzfi 0 3 Fin
29 28 olci 0 3 0 0 3 Fin
30 sumz 0 3 0 0 3 Fin k = 0 3 0 = 0
31 29 30 ax-mp k = 0 3 0 = 0
32 2 27 31 3eqtri A 0 dx = 0