Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|
2 |
1
|
dfitg |
|
3 |
|
ax-icn |
|
4 |
|
elfznn0 |
|
5 |
|
expcl |
|
6 |
3 4 5
|
sylancr |
|
7 |
|
ine0 |
|
8 |
|
elfzelz |
|
9 |
|
expne0i |
|
10 |
3 7 8 9
|
mp3an12i |
|
11 |
6 10
|
div0d |
|
12 |
11
|
fveq2d |
|
13 |
|
re0 |
|
14 |
12 13
|
eqtrdi |
|
15 |
14
|
ifeq1d |
|
16 |
|
ifid |
|
17 |
15 16
|
eqtrdi |
|
18 |
17
|
mpteq2dv |
|
19 |
|
fconstmpt |
|
20 |
18 19
|
eqtr4di |
|
21 |
20
|
fveq2d |
|
22 |
|
itg20 |
|
23 |
21 22
|
eqtrdi |
|
24 |
23
|
oveq2d |
|
25 |
6
|
mul01d |
|
26 |
24 25
|
eqtrd |
|
27 |
26
|
sumeq2i |
|
28 |
|
fzfi |
|
29 |
28
|
olci |
|
30 |
|
sumz |
|
31 |
29 30
|
ax-mp |
|
32 |
2 27 31
|
3eqtri |
|