Step |
Hyp |
Ref |
Expression |
1 |
|
itscnhlc0yqe.q |
|
2 |
|
itsclc0yqsol.d |
|
3 |
|
animorr |
|
4 |
3
|
anim2i |
|
5 |
1 2
|
itsclc0yqsol |
|
6 |
4 5
|
syl3an1 |
|
7 |
6
|
imp |
|
8 |
|
oveq1 |
|
9 |
8
|
adantr |
|
10 |
9
|
adantl |
|
11 |
10
|
adantr |
|
12 |
|
rpcn |
|
13 |
12
|
adantr |
|
14 |
13
|
adantl |
|
15 |
14
|
sqcld |
|
16 |
1
|
resum2sqcl |
|
17 |
16
|
recnd |
|
18 |
17
|
3adant3 |
|
19 |
18
|
adantr |
|
20 |
19
|
adantr |
|
21 |
15 20
|
mulcld |
|
22 |
|
simpll3 |
|
23 |
22
|
recnd |
|
24 |
23
|
sqcld |
|
25 |
21 24
|
subcld |
|
26 |
2 25
|
eqeltrid |
|
27 |
26
|
sqrtcld |
|
28 |
27
|
mul02d |
|
29 |
11 28
|
eqtrd |
|
30 |
29
|
oveq2d |
|
31 |
|
simpll2 |
|
32 |
31
|
recnd |
|
33 |
32 23
|
mulcld |
|
34 |
33
|
subid1d |
|
35 |
30 34
|
eqtrd |
|
36 |
|
sq0i |
|
37 |
36
|
adantr |
|
38 |
37
|
adantl |
|
39 |
38
|
adantr |
|
40 |
39
|
oveq1d |
|
41 |
32
|
sqcld |
|
42 |
41
|
addid2d |
|
43 |
40 42
|
eqtrd |
|
44 |
1 43
|
eqtrid |
|
45 |
|
recn |
|
46 |
45
|
sqvald |
|
47 |
46
|
3ad2ant2 |
|
48 |
47
|
adantr |
|
49 |
48
|
adantr |
|
50 |
44 49
|
eqtrd |
|
51 |
35 50
|
oveq12d |
|
52 |
|
simplrr |
|
53 |
23 32 32 52 52
|
divcan5d |
|
54 |
51 53
|
eqtrd |
|
55 |
54
|
eqeq2d |
|
56 |
55
|
biimpd |
|
57 |
29
|
oveq2d |
|
58 |
33
|
addid1d |
|
59 |
57 58
|
eqtrd |
|
60 |
59 44
|
oveq12d |
|
61 |
|
simp2 |
|
62 |
61
|
recnd |
|
63 |
62
|
sqvald |
|
64 |
63
|
adantr |
|
65 |
64
|
oveq2d |
|
66 |
|
simpl3 |
|
67 |
66
|
recnd |
|
68 |
62
|
adantr |
|
69 |
|
simpr |
|
70 |
69
|
adantl |
|
71 |
67 68 68 70 70
|
divcan5d |
|
72 |
65 71
|
eqtrd |
|
73 |
72
|
adantr |
|
74 |
60 73
|
eqtrd |
|
75 |
74
|
eqeq2d |
|
76 |
75
|
biimpd |
|
77 |
56 76
|
jaod |
|
78 |
77
|
3adant3 |
|
79 |
78
|
adantr |
|
80 |
|
oveq1 |
|
81 |
80
|
oveq2d |
|
82 |
81
|
eqeq1d |
|
83 |
15
|
3adant3 |
|
84 |
23
|
3adant3 |
|
85 |
32
|
3adant3 |
|
86 |
|
simp1rr |
|
87 |
84 85 86
|
divcld |
|
88 |
87
|
sqcld |
|
89 |
|
simp3l |
|
90 |
89
|
recnd |
|
91 |
90
|
sqcld |
|
92 |
83 88 91
|
subadd2d |
|
93 |
23 32 52
|
sqdivd |
|
94 |
93
|
oveq2d |
|
95 |
31
|
resqcld |
|
96 |
31 52
|
sqgt0d |
|
97 |
95 96
|
elrpd |
|
98 |
97
|
rpcnne0d |
|
99 |
|
subdivcomb1 |
|
100 |
15 24 98 99
|
syl3anc |
|
101 |
94 100
|
eqtr4d |
|
102 |
101
|
eqeq1d |
|
103 |
102
|
3adant3 |
|
104 |
41
|
3adant3 |
|
105 |
104 83
|
mulcomd |
|
106 |
44
|
3adant3 |
|
107 |
106
|
eqcomd |
|
108 |
107
|
oveq2d |
|
109 |
105 108
|
eqtrd |
|
110 |
109
|
oveq1d |
|
111 |
110
|
oveq1d |
|
112 |
111
|
eqeq1d |
|
113 |
2
|
oveq1i |
|
114 |
113
|
eqeq1i |
|
115 |
|
eqcom |
|
116 |
26
|
3adant3 |
|
117 |
|
sqrtth |
|
118 |
117
|
eqcomd |
|
119 |
116 118
|
syl |
|
120 |
119
|
oveq1d |
|
121 |
27
|
3adant3 |
|
122 |
121 85 86
|
sqdivd |
|
123 |
120 122
|
eqtr4d |
|
124 |
123
|
eqeq2d |
|
125 |
121 85 86
|
divcld |
|
126 |
90 125
|
jca |
|
127 |
|
sqeqor |
|
128 |
126 127
|
syl |
|
129 |
|
orcom |
|
130 |
129
|
a1i |
|
131 |
124 128 130
|
3bitrd |
|
132 |
131
|
biimpd |
|
133 |
115 132
|
syl5bi |
|
134 |
114 133
|
syl5bir |
|
135 |
112 134
|
sylbid |
|
136 |
103 135
|
sylbid |
|
137 |
92 136
|
sylbird |
|
138 |
137
|
com12 |
|
139 |
82 138
|
syl6bi |
|
140 |
139
|
com13 |
|
141 |
140
|
adantrd |
|
142 |
141
|
imp |
|
143 |
142
|
ancld |
|
144 |
79 143
|
syld |
|
145 |
7 144
|
mpd |
|
146 |
145
|
ex |
|