Step |
Hyp |
Ref |
Expression |
1 |
|
itscnhlc0yqe.q |
|
2 |
|
itscnhlc0yqe.t |
|
3 |
|
itscnhlc0yqe.u |
|
4 |
|
oveq2 |
|
5 |
4
|
oveq2d |
|
6 |
5
|
oveq1d |
|
7 |
6
|
negeqd |
|
8 |
|
oveq1 |
|
9 |
7 8
|
oveq12d |
|
10 |
9
|
oveq2d |
|
11 |
10
|
eqcoms |
|
12 |
|
simp12 |
|
13 |
12
|
recnd |
|
14 |
|
simp3r |
|
15 |
14
|
recnd |
|
16 |
13 15
|
mulcld |
|
17 |
16
|
sqcld |
|
18 |
|
2cnd |
|
19 |
13 16
|
mulcld |
|
20 |
18 19
|
mulcld |
|
21 |
20 15
|
mulcld |
|
22 |
21
|
negcld |
|
23 |
|
add32r |
|
24 |
17 22 17 23
|
syl3anc |
|
25 |
17 17
|
addcld |
|
26 |
25 21
|
negsubd |
|
27 |
18 19 15
|
mulassd |
|
28 |
13 16 15
|
mul32d |
|
29 |
16
|
sqvald |
|
30 |
28 29
|
eqtr4d |
|
31 |
30
|
oveq2d |
|
32 |
17
|
2timesd |
|
33 |
27 31 32
|
3eqtrrd |
|
34 |
25 33
|
subeq0bd |
|
35 |
26 34
|
eqtrd |
|
36 |
24 35
|
eqtrd |
|
37 |
11 36
|
sylan9eqr |
|
38 |
37
|
ex |
|
39 |
|
simp3l |
|
40 |
39
|
recnd |
|
41 |
40
|
mul02d |
|
42 |
41
|
oveq1d |
|
43 |
16
|
addid2d |
|
44 |
42 43
|
eqtrd |
|
45 |
44
|
eqeq1d |
|
46 |
13
|
sqcld |
|
47 |
46
|
addid2d |
|
48 |
47
|
oveq1d |
|
49 |
13 15
|
sqmuld |
|
50 |
48 49
|
eqtr4d |
|
51 |
|
simp13 |
|
52 |
51
|
recnd |
|
53 |
13 52
|
mulcld |
|
54 |
18 53
|
mulcld |
|
55 |
54 15
|
mulneg1d |
|
56 |
|
rpcn |
|
57 |
56
|
sqcld |
|
58 |
57
|
mul02d |
|
59 |
58
|
oveq2d |
|
60 |
59
|
3ad2ant2 |
|
61 |
52
|
sqcld |
|
62 |
61
|
subid1d |
|
63 |
60 62
|
eqtrd |
|
64 |
55 63
|
oveq12d |
|
65 |
50 64
|
oveq12d |
|
66 |
65
|
eqeq1d |
|
67 |
38 45 66
|
3imtr4d |
|
68 |
67
|
3exp |
|
69 |
68
|
3adant1r |
|
70 |
69
|
3imp |
|
71 |
70
|
adantld |
|
72 |
|
oveq1 |
|
73 |
72
|
oveq1d |
|
74 |
73
|
eqeq1d |
|
75 |
74
|
anbi2d |
|
76 |
|
sq0i |
|
77 |
76
|
oveq1d |
|
78 |
1 77
|
eqtrid |
|
79 |
78
|
oveq1d |
|
80 |
2
|
oveq1i |
|
81 |
80
|
a1i |
|
82 |
76
|
oveq1d |
|
83 |
82
|
oveq2d |
|
84 |
3 83
|
eqtrid |
|
85 |
81 84
|
oveq12d |
|
86 |
79 85
|
oveq12d |
|
87 |
86
|
eqeq1d |
|
88 |
75 87
|
imbi12d |
|
89 |
88
|
adantl |
|
90 |
89
|
3ad2ant1 |
|
91 |
90
|
3ad2ant1 |
|
92 |
71 91
|
mpbird |
|