Metamath Proof Explorer


Theorem itsclc0yqe

Description: Lemma for itsclc0 . Quadratic equation for the y-coordinate of the intersection points of an arbitrary line and a circle. This theorem holds even for degenerate lines ( A = B = 0 ). (Contributed by AV, 25-Feb-2023)

Ref Expression
Hypotheses itscnhlc0yqe.q Q=A2+B2
itscnhlc0yqe.t T=2BC
itscnhlc0yqe.u U=C2A2R2
Assertion itsclc0yqe ABCR+XYX2+Y2=R2AX+BY=CQY2+TY+U=0

Proof

Step Hyp Ref Expression
1 itscnhlc0yqe.q Q=A2+B2
2 itscnhlc0yqe.t T=2BC
3 itscnhlc0yqe.u U=C2A2R2
4 simp11 ABCR+XYA
5 4 anim1i ABCR+XYA=0AA=0
6 5 ancoms A=0ABCR+XYAA=0
7 simpr12 A=0ABCR+XYB
8 simpr13 A=0ABCR+XYC
9 simpr2 A=0ABCR+XYR+
10 simpr3 A=0ABCR+XYXY
11 1 2 3 itschlc0yqe AA=0BCR+XYX2+Y2=R2AX+BY=CQY2+TY+U=0
12 6 7 8 9 10 11 syl311anc A=0ABCR+XYX2+Y2=R2AX+BY=CQY2+TY+U=0
13 12 ex A=0ABCR+XYX2+Y2=R2AX+BY=CQY2+TY+U=0
14 4 anim1i ABCR+XYA0AA0
15 14 ancoms A0ABCR+XYAA0
16 simpr12 A0ABCR+XYB
17 simpr13 A0ABCR+XYC
18 simpr2 A0ABCR+XYR+
19 simpr3 A0ABCR+XYXY
20 1 2 3 itscnhlc0yqe AA0BCR+XYX2+Y2=R2AX+BY=CQY2+TY+U=0
21 15 16 17 18 19 20 syl311anc A0ABCR+XYX2+Y2=R2AX+BY=CQY2+TY+U=0
22 21 ex A0ABCR+XYX2+Y2=R2AX+BY=CQY2+TY+U=0
23 13 22 pm2.61ine ABCR+XYX2+Y2=R2AX+BY=CQY2+TY+U=0