| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itscnhlc0yqe.q |
|
| 2 |
|
itscnhlc0yqe.t |
|
| 3 |
|
itscnhlc0yqe.u |
|
| 4 |
|
itsclc0yqsollem1.d |
|
| 5 |
|
recn |
|
| 6 |
|
recn |
|
| 7 |
|
recn |
|
| 8 |
5 6 7
|
3anim123i |
|
| 9 |
|
recn |
|
| 10 |
8 9
|
anim12i |
|
| 11 |
10
|
3adant3 |
|
| 12 |
1 2 3 4
|
itsclc0yqsollem1 |
|
| 13 |
11 12
|
syl |
|
| 14 |
13
|
fveq2d |
|
| 15 |
|
4re |
|
| 16 |
15
|
a1i |
|
| 17 |
|
simp1 |
|
| 18 |
17
|
resqcld |
|
| 19 |
18
|
3ad2ant1 |
|
| 20 |
16 19
|
remulcld |
|
| 21 |
|
0re |
|
| 22 |
|
4pos |
|
| 23 |
21 15 22
|
ltleii |
|
| 24 |
23
|
a1i |
|
| 25 |
17
|
sqge0d |
|
| 26 |
25
|
3ad2ant1 |
|
| 27 |
16 19 24 26
|
mulge0d |
|
| 28 |
|
simp2 |
|
| 29 |
28
|
resqcld |
|
| 30 |
1
|
resum2sqcl |
|
| 31 |
30
|
3adant3 |
|
| 32 |
31
|
3ad2ant1 |
|
| 33 |
29 32
|
remulcld |
|
| 34 |
|
simp3 |
|
| 35 |
34
|
resqcld |
|
| 36 |
35
|
3ad2ant1 |
|
| 37 |
33 36
|
resubcld |
|
| 38 |
4 37
|
eqeltrid |
|
| 39 |
|
simp3 |
|
| 40 |
20 27 38 39
|
sqrtmuld |
|
| 41 |
15 23
|
pm3.2i |
|
| 42 |
41
|
a1i |
|
| 43 |
|
resqcl |
|
| 44 |
|
sqge0 |
|
| 45 |
|
sqrtmul |
|
| 46 |
42 43 44 45
|
syl12anc |
|
| 47 |
46
|
3ad2ant1 |
|
| 48 |
47
|
3ad2ant1 |
|
| 49 |
|
sqrt4 |
|
| 50 |
49
|
a1i |
|
| 51 |
|
absre |
|
| 52 |
51
|
eqcomd |
|
| 53 |
52
|
3ad2ant1 |
|
| 54 |
53
|
3ad2ant1 |
|
| 55 |
50 54
|
oveq12d |
|
| 56 |
48 55
|
eqtrd |
|
| 57 |
56
|
oveq1d |
|
| 58 |
14 40 57
|
3eqtrd |
|