Metamath Proof Explorer


Theorem ituni0

Description: A zero-fold iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Hypothesis ituni.u U = x V rec y V y x ω
Assertion ituni0 A V U A = A

Proof

Step Hyp Ref Expression
1 ituni.u U = x V rec y V y x ω
2 1 itunifval A V U A = rec y V y A ω
3 2 fveq1d A V U A = rec y V y A ω
4 fr0g A V rec y V y A ω = A
5 3 4 eqtrd A V U A = A