Metamath Proof Explorer


Theorem itunifn

Description: Functionality of the iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Hypothesis ituni.u U = x V rec y V y x ω
Assertion itunifn A V U A Fn ω

Proof

Step Hyp Ref Expression
1 ituni.u U = x V rec y V y x ω
2 frfnom rec y V y A ω Fn ω
3 1 itunifval A V U A = rec y V y A ω
4 3 fneq1d A V U A Fn ω rec y V y A ω Fn ω
5 2 4 mpbiri A V U A Fn ω