Metamath Proof Explorer


Theorem itunifval

Description: Function value of iterated unions.EDITORIAL: The iterated unions and order types of ordered sets are split out here because they could conceivably be independently useful. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Hypothesis ituni.u U = x V rec y V y x ω
Assertion itunifval A V U A = rec y V y A ω

Proof

Step Hyp Ref Expression
1 ituni.u U = x V rec y V y x ω
2 elex A V A V
3 rdgeq2 x = A rec y V y x = rec y V y A
4 3 reseq1d x = A rec y V y x ω = rec y V y A ω
5 rdgfun Fun rec y V y A
6 omex ω V
7 resfunexg Fun rec y V y A ω V rec y V y A ω V
8 5 6 7 mp2an rec y V y A ω V
9 4 1 8 fvmpt A V U A = rec y V y A ω
10 2 9 syl A V U A = rec y V y A ω