Metamath Proof Explorer


Theorem ituniiun

Description: Unwrap an iterated union from the "other end". (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Hypothesis ituni.u U = x V rec y V y x ω
Assertion ituniiun A V U A suc B = a A U a B

Proof

Step Hyp Ref Expression
1 ituni.u U = x V rec y V y x ω
2 fveq2 b = A U b = U A
3 2 fveq1d b = A U b suc B = U A suc B
4 iuneq1 b = A a b U a B = a A U a B
5 3 4 eqeq12d b = A U b suc B = a b U a B U A suc B = a A U a B
6 suceq d = suc d = suc
7 6 fveq2d d = U b suc d = U b suc
8 fveq2 d = U a d = U a
9 8 iuneq2d d = a b U a d = a b U a
10 7 9 eqeq12d d = U b suc d = a b U a d U b suc = a b U a
11 suceq d = c suc d = suc c
12 11 fveq2d d = c U b suc d = U b suc c
13 fveq2 d = c U a d = U a c
14 13 iuneq2d d = c a b U a d = a b U a c
15 12 14 eqeq12d d = c U b suc d = a b U a d U b suc c = a b U a c
16 suceq d = suc c suc d = suc suc c
17 16 fveq2d d = suc c U b suc d = U b suc suc c
18 fveq2 d = suc c U a d = U a suc c
19 18 iuneq2d d = suc c a b U a d = a b U a suc c
20 17 19 eqeq12d d = suc c U b suc d = a b U a d U b suc suc c = a b U a suc c
21 suceq d = B suc d = suc B
22 21 fveq2d d = B U b suc d = U b suc B
23 fveq2 d = B U a d = U a B
24 23 iuneq2d d = B a b U a d = a b U a B
25 22 24 eqeq12d d = B U b suc d = a b U a d U b suc B = a b U a B
26 uniiun b = a b a
27 1 itunisuc U b suc = U b
28 1 ituni0 b V U b = b
29 28 elv U b = b
30 29 unieqi U b = b
31 27 30 eqtri U b suc = b
32 1 ituni0 a b U a = a
33 32 iuneq2i a b U a = a b a
34 26 31 33 3eqtr4i U b suc = a b U a
35 1 itunisuc U b suc suc c = U b suc c
36 unieq U b suc c = a b U a c U b suc c = a b U a c
37 1 itunisuc U a suc c = U a c
38 37 a1i a b U a suc c = U a c
39 38 iuneq2i a b U a suc c = a b U a c
40 iuncom4 a b U a c = a b U a c
41 39 40 eqtr2i a b U a c = a b U a suc c
42 36 41 eqtrdi U b suc c = a b U a c U b suc c = a b U a suc c
43 35 42 eqtrid U b suc c = a b U a c U b suc suc c = a b U a suc c
44 43 a1i c ω U b suc c = a b U a c U b suc suc c = a b U a suc c
45 10 15 20 25 34 44 finds B ω U b suc B = a b U a B
46 iun0 a b =
47 46 eqcomi = a b
48 peano2b B ω suc B ω
49 vex b V
50 1 itunifn b V U b Fn ω
51 fndm U b Fn ω dom U b = ω
52 49 50 51 mp2b dom U b = ω
53 52 eleq2i suc B dom U b suc B ω
54 48 53 bitr4i B ω suc B dom U b
55 ndmfv ¬ suc B dom U b U b suc B =
56 54 55 sylnbi ¬ B ω U b suc B =
57 vex a V
58 1 itunifn a V U a Fn ω
59 fndm U a Fn ω dom U a = ω
60 57 58 59 mp2b dom U a = ω
61 60 eleq2i B dom U a B ω
62 ndmfv ¬ B dom U a U a B =
63 61 62 sylnbir ¬ B ω U a B =
64 63 iuneq2d ¬ B ω a b U a B = a b
65 47 56 64 3eqtr4a ¬ B ω U b suc B = a b U a B
66 45 65 pm2.61i U b suc B = a b U a B
67 5 66 vtoclg A V U A suc B = a A U a B