Metamath Proof Explorer


Theorem itunisuc

Description: Successor iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Hypothesis ituni.u U = x V rec y V y x ω
Assertion itunisuc U A suc B = U A B

Proof

Step Hyp Ref Expression
1 ituni.u U = x V rec y V y x ω
2 frsuc B ω rec y V y A ω suc B = y V y rec y V y A ω B
3 fvex rec y V y A ω B V
4 unieq a = rec y V y A ω B a = rec y V y A ω B
5 unieq y = a y = a
6 5 cbvmptv y V y = a V a
7 3 uniex rec y V y A ω B V
8 4 6 7 fvmpt rec y V y A ω B V y V y rec y V y A ω B = rec y V y A ω B
9 3 8 ax-mp y V y rec y V y A ω B = rec y V y A ω B
10 2 9 eqtrdi B ω rec y V y A ω suc B = rec y V y A ω B
11 10 adantl A V B ω rec y V y A ω suc B = rec y V y A ω B
12 1 itunifval A V U A = rec y V y A ω
13 12 fveq1d A V U A suc B = rec y V y A ω suc B
14 13 adantr A V B ω U A suc B = rec y V y A ω suc B
15 12 fveq1d A V U A B = rec y V y A ω B
16 15 adantr A V B ω U A B = rec y V y A ω B
17 16 unieqd A V B ω U A B = rec y V y A ω B
18 11 14 17 3eqtr4d A V B ω U A suc B = U A B
19 uni0 =
20 19 eqcomi =
21 1 itunifn A V U A Fn ω
22 21 fndmd A V dom U A = ω
23 22 eleq2d A V suc B dom U A suc B ω
24 peano2b B ω suc B ω
25 23 24 bitr4di A V suc B dom U A B ω
26 25 notbid A V ¬ suc B dom U A ¬ B ω
27 26 biimpar A V ¬ B ω ¬ suc B dom U A
28 ndmfv ¬ suc B dom U A U A suc B =
29 27 28 syl A V ¬ B ω U A suc B =
30 22 eleq2d A V B dom U A B ω
31 30 notbid A V ¬ B dom U A ¬ B ω
32 31 biimpar A V ¬ B ω ¬ B dom U A
33 ndmfv ¬ B dom U A U A B =
34 32 33 syl A V ¬ B ω U A B =
35 34 unieqd A V ¬ B ω U A B =
36 20 29 35 3eqtr4a A V ¬ B ω U A suc B = U A B
37 18 36 pm2.61dan A V U A suc B = U A B
38 0fv B =
39 38 unieqi B =
40 0fv suc B =
41 19 39 40 3eqtr4ri suc B = B
42 fvprc ¬ A V U A =
43 42 fveq1d ¬ A V U A suc B = suc B
44 42 fveq1d ¬ A V U A B = B
45 44 unieqd ¬ A V U A B = B
46 41 43 45 3eqtr4a ¬ A V U A suc B = U A B
47 37 46 pm2.61i U A suc B = U A B