Metamath Proof Explorer


Theorem itunitc1

Description: Each union iterate is a member of the transitive closure. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Hypothesis ituni.u U = x V rec y V y x ω
Assertion itunitc1 U A B TC A

Proof

Step Hyp Ref Expression
1 ituni.u U = x V rec y V y x ω
2 fveq2 a = A U a = U A
3 2 fveq1d a = A U a B = U A B
4 fveq2 a = A TC a = TC A
5 3 4 sseq12d a = A U a B TC a U A B TC A
6 fveq2 b = U a b = U a
7 6 sseq1d b = U a b TC a U a TC a
8 fveq2 b = c U a b = U a c
9 8 sseq1d b = c U a b TC a U a c TC a
10 fveq2 b = suc c U a b = U a suc c
11 10 sseq1d b = suc c U a b TC a U a suc c TC a
12 fveq2 b = B U a b = U a B
13 12 sseq1d b = B U a b TC a U a B TC a
14 1 ituni0 a V U a = a
15 tcid a V a TC a
16 14 15 eqsstrd a V U a TC a
17 16 elv U a TC a
18 1 itunisuc U a suc c = U a c
19 tctr Tr TC a
20 pwtr Tr TC a Tr 𝒫 TC a
21 19 20 mpbi Tr 𝒫 TC a
22 trss Tr 𝒫 TC a U a c 𝒫 TC a U a c 𝒫 TC a
23 21 22 ax-mp U a c 𝒫 TC a U a c 𝒫 TC a
24 fvex U a c V
25 24 elpw U a c 𝒫 TC a U a c TC a
26 sspwuni U a c 𝒫 TC a U a c TC a
27 23 25 26 3imtr3i U a c TC a U a c TC a
28 18 27 eqsstrid U a c TC a U a suc c TC a
29 28 a1i c ω U a c TC a U a suc c TC a
30 7 9 11 13 17 29 finds B ω U a B TC a
31 vex a V
32 1 itunifn a V U a Fn ω
33 fndm U a Fn ω dom U a = ω
34 31 32 33 mp2b dom U a = ω
35 34 eleq2i B dom U a B ω
36 ndmfv ¬ B dom U a U a B =
37 35 36 sylnbir ¬ B ω U a B =
38 0ss TC a
39 37 38 eqsstrdi ¬ B ω U a B TC a
40 30 39 pm2.61i U a B TC a
41 5 40 vtoclg A V U A B TC A
42 fv2prc ¬ A V U A B =
43 0ss TC A
44 42 43 eqsstrdi ¬ A V U A B TC A
45 41 44 pm2.61i U A B TC A