Metamath Proof Explorer


Theorem iun0

Description: An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion iun0 x A =

Proof

Step Hyp Ref Expression
1 noel ¬ y
2 1 a1i x A ¬ y
3 2 nrex ¬ x A y
4 eliun y x A x A y
5 3 4 mtbir ¬ y x A
6 5 nel0 x A =