Metamath Proof Explorer


Theorem iunctb

Description: The countable union of countable sets is countable (indexed union version of unictb ). (Contributed by Mario Carneiro, 18-Jan-2014)

Ref Expression
Assertion iunctb A ω x A B ω x A B ω

Proof

Step Hyp Ref Expression
1 eqid x A x × B = x A x × B
2 simpl A ω x A B ω A ω
3 ctex A ω A V
4 3 adantr A ω x A B ω A V
5 ovex ω B V
6 5 rgenw x A ω B V
7 iunexg A V x A ω B V x A ω B V
8 4 6 7 sylancl A ω x A B ω x A ω B V
9 acncc AC _ ω = V
10 8 9 eleqtrrdi A ω x A B ω x A ω B AC _ ω
11 acndom A ω x A ω B AC _ ω x A ω B AC _ A
12 2 10 11 sylc A ω x A B ω x A ω B AC _ A
13 simpr A ω x A B ω x A B ω
14 omex ω V
15 xpdom1g ω V A ω A × ω ω × ω
16 14 2 15 sylancr A ω x A B ω A × ω ω × ω
17 xpomen ω × ω ω
18 domentr A × ω ω × ω ω × ω ω A × ω ω
19 16 17 18 sylancl A ω x A B ω A × ω ω
20 ctex B ω B V
21 20 ralimi x A B ω x A B V
22 iunexg A V x A B V x A B V
23 3 21 22 syl2an A ω x A B ω x A B V
24 omelon ω On
25 onenon ω On ω dom card
26 24 25 ax-mp ω dom card
27 numacn x A B V ω dom card ω AC _ x A B
28 23 26 27 mpisyl A ω x A B ω ω AC _ x A B
29 acndom2 A × ω ω ω AC _ x A B A × ω AC _ x A B
30 19 28 29 sylc A ω x A B ω A × ω AC _ x A B
31 1 12 13 30 iundomg A ω x A B ω x A B A × ω
32 domtr x A B A × ω A × ω ω x A B ω
33 31 19 32 syl2anc A ω x A B ω x A B ω