Metamath Proof Explorer


Theorem iundifdifd

Description: The intersection of a set is the complement of the union of the complements. (Contributed by Thierry Arnoux, 19-Dec-2016)

Ref Expression
Assertion iundifdifd A 𝒫 O A A = O x A O x

Proof

Step Hyp Ref Expression
1 iundif2 x A O x = O x A x
2 intiin A = x A x
3 2 difeq2i O A = O x A x
4 1 3 eqtr4i x A O x = O A
5 4 difeq2i O x A O x = O O A
6 intssuni2 A 𝒫 O A A 𝒫 O
7 unipw 𝒫 O = O
8 6 7 sseqtrdi A 𝒫 O A A O
9 dfss4 A O O O A = A
10 8 9 sylib A 𝒫 O A O O A = A
11 5 10 eqtr2id A 𝒫 O A A = O x A O x
12 11 ex A 𝒫 O A A = O x A O x