Step |
Hyp |
Ref |
Expression |
1 |
|
iundisj.1 |
|
2 |
|
ssrab2 |
|
3 |
|
nnuz |
|
4 |
2 3
|
sseqtri |
|
5 |
|
rabn0 |
|
6 |
5
|
biimpri |
|
7 |
|
infssuzcl |
|
8 |
4 6 7
|
sylancr |
|
9 |
|
nfrab1 |
|
10 |
|
nfcv |
|
11 |
|
nfcv |
|
12 |
9 10 11
|
nfinf |
|
13 |
|
nfcv |
|
14 |
12
|
nfcsb1 |
|
15 |
14
|
nfcri |
|
16 |
|
csbeq1a |
|
17 |
16
|
eleq2d |
|
18 |
12 13 15 17
|
elrabf |
|
19 |
8 18
|
sylib |
|
20 |
19
|
simpld |
|
21 |
19
|
simprd |
|
22 |
20
|
nnred |
|
23 |
22
|
ltnrd |
|
24 |
|
eliun |
|
25 |
22
|
ad2antrr |
|
26 |
|
elfzouz |
|
27 |
26 3
|
eleqtrrdi |
|
28 |
27
|
ad2antlr |
|
29 |
28
|
nnred |
|
30 |
1
|
eleq2d |
|
31 |
|
simpr |
|
32 |
30 28 31
|
elrabd |
|
33 |
|
infssuzle |
|
34 |
4 32 33
|
sylancr |
|
35 |
|
elfzolt2 |
|
36 |
35
|
ad2antlr |
|
37 |
25 29 25 34 36
|
lelttrd |
|
38 |
37
|
rexlimdva2 |
|
39 |
24 38
|
syl5bi |
|
40 |
23 39
|
mtod |
|
41 |
21 40
|
eldifd |
|
42 |
|
csbeq1 |
|
43 |
|
oveq2 |
|
44 |
43
|
iuneq1d |
|
45 |
42 44
|
difeq12d |
|
46 |
45
|
eleq2d |
|
47 |
46
|
rspcev |
|
48 |
20 41 47
|
syl2anc |
|
49 |
|
nfv |
|
50 |
|
nfcsb1v |
|
51 |
|
nfcv |
|
52 |
50 51
|
nfdif |
|
53 |
52
|
nfcri |
|
54 |
|
csbeq1a |
|
55 |
|
oveq2 |
|
56 |
55
|
iuneq1d |
|
57 |
54 56
|
difeq12d |
|
58 |
57
|
eleq2d |
|
59 |
49 53 58
|
cbvrexw |
|
60 |
48 59
|
sylibr |
|
61 |
|
eldifi |
|
62 |
61
|
reximi |
|
63 |
60 62
|
impbii |
|
64 |
|
eliun |
|
65 |
|
eliun |
|
66 |
63 64 65
|
3bitr4i |
|
67 |
66
|
eqriv |
|