Description: Rewrite a countable union as a disjoint union. (Contributed by Mario Carneiro, 20-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | iundisj.1 | |
|
Assertion | iundisj | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iundisj.1 | |
|
2 | ssrab2 | |
|
3 | nnuz | |
|
4 | 2 3 | sseqtri | |
5 | rabn0 | |
|
6 | 5 | biimpri | |
7 | infssuzcl | |
|
8 | 4 6 7 | sylancr | |
9 | nfrab1 | |
|
10 | nfcv | |
|
11 | nfcv | |
|
12 | 9 10 11 | nfinf | |
13 | nfcv | |
|
14 | 12 | nfcsb1 | |
15 | 14 | nfcri | |
16 | csbeq1a | |
|
17 | 16 | eleq2d | |
18 | 12 13 15 17 | elrabf | |
19 | 8 18 | sylib | |
20 | 19 | simpld | |
21 | 19 | simprd | |
22 | 20 | nnred | |
23 | 22 | ltnrd | |
24 | eliun | |
|
25 | 22 | ad2antrr | |
26 | elfzouz | |
|
27 | 26 3 | eleqtrrdi | |
28 | 27 | ad2antlr | |
29 | 28 | nnred | |
30 | 1 | eleq2d | |
31 | simpr | |
|
32 | 30 28 31 | elrabd | |
33 | infssuzle | |
|
34 | 4 32 33 | sylancr | |
35 | elfzolt2 | |
|
36 | 35 | ad2antlr | |
37 | 25 29 25 34 36 | lelttrd | |
38 | 37 | rexlimdva2 | |
39 | 24 38 | biimtrid | |
40 | 23 39 | mtod | |
41 | 21 40 | eldifd | |
42 | csbeq1 | |
|
43 | oveq2 | |
|
44 | 43 | iuneq1d | |
45 | 42 44 | difeq12d | |
46 | 45 | eleq2d | |
47 | 46 | rspcev | |
48 | 20 41 47 | syl2anc | |
49 | nfv | |
|
50 | nfcsb1v | |
|
51 | nfcv | |
|
52 | 50 51 | nfdif | |
53 | 52 | nfcri | |
54 | csbeq1a | |
|
55 | oveq2 | |
|
56 | 55 | iuneq1d | |
57 | 54 56 | difeq12d | |
58 | 57 | eleq2d | |
59 | 49 53 58 | cbvrexw | |
60 | 48 59 | sylibr | |
61 | eldifi | |
|
62 | 61 | reximi | |
63 | 60 62 | impbii | |
64 | eliun | |
|
65 | eliun | |
|
66 | 63 64 65 | 3bitr4i | |
67 | 66 | eqriv | |