Metamath Proof Explorer


Theorem iundisj

Description: Rewrite a countable union as a disjoint union. (Contributed by Mario Carneiro, 20-Mar-2014)

Ref Expression
Hypothesis iundisj.1 n=kA=B
Assertion iundisj nA=nAk1..^nB

Proof

Step Hyp Ref Expression
1 iundisj.1 n=kA=B
2 ssrab2 n|xA
3 nnuz =1
4 2 3 sseqtri n|xA1
5 rabn0 n|xAnxA
6 5 biimpri nxAn|xA
7 infssuzcl n|xA1n|xAsupn|xA<n|xA
8 4 6 7 sylancr nxAsupn|xA<n|xA
9 nfrab1 _nn|xA
10 nfcv _n
11 nfcv _n<
12 9 10 11 nfinf _nsupn|xA<
13 nfcv _n
14 12 nfcsb1 _nsupn|xA</nA
15 14 nfcri nxsupn|xA</nA
16 csbeq1a n=supn|xA<A=supn|xA</nA
17 16 eleq2d n=supn|xA<xAxsupn|xA</nA
18 12 13 15 17 elrabf supn|xA<n|xAsupn|xA<xsupn|xA</nA
19 8 18 sylib nxAsupn|xA<xsupn|xA</nA
20 19 simpld nxAsupn|xA<
21 19 simprd nxAxsupn|xA</nA
22 20 nnred nxAsupn|xA<
23 22 ltnrd nxA¬supn|xA<<supn|xA<
24 eliun xk1..^supn|xA<Bk1..^supn|xA<xB
25 22 ad2antrr nxAk1..^supn|xA<xBsupn|xA<
26 elfzouz k1..^supn|xA<k1
27 26 3 eleqtrrdi k1..^supn|xA<k
28 27 ad2antlr nxAk1..^supn|xA<xBk
29 28 nnred nxAk1..^supn|xA<xBk
30 1 eleq2d n=kxAxB
31 simpr nxAk1..^supn|xA<xBxB
32 30 28 31 elrabd nxAk1..^supn|xA<xBkn|xA
33 infssuzle n|xA1kn|xAsupn|xA<k
34 4 32 33 sylancr nxAk1..^supn|xA<xBsupn|xA<k
35 elfzolt2 k1..^supn|xA<k<supn|xA<
36 35 ad2antlr nxAk1..^supn|xA<xBk<supn|xA<
37 25 29 25 34 36 lelttrd nxAk1..^supn|xA<xBsupn|xA<<supn|xA<
38 37 rexlimdva2 nxAk1..^supn|xA<xBsupn|xA<<supn|xA<
39 24 38 biimtrid nxAxk1..^supn|xA<Bsupn|xA<<supn|xA<
40 23 39 mtod nxA¬xk1..^supn|xA<B
41 21 40 eldifd nxAxsupn|xA</nAk1..^supn|xA<B
42 csbeq1 m=supn|xA<m/nA=supn|xA</nA
43 oveq2 m=supn|xA<1..^m=1..^supn|xA<
44 43 iuneq1d m=supn|xA<k1..^mB=k1..^supn|xA<B
45 42 44 difeq12d m=supn|xA<m/nAk1..^mB=supn|xA</nAk1..^supn|xA<B
46 45 eleq2d m=supn|xA<xm/nAk1..^mBxsupn|xA</nAk1..^supn|xA<B
47 46 rspcev supn|xA<xsupn|xA</nAk1..^supn|xA<Bmxm/nAk1..^mB
48 20 41 47 syl2anc nxAmxm/nAk1..^mB
49 nfv mxAk1..^nB
50 nfcsb1v _nm/nA
51 nfcv _nk1..^mB
52 50 51 nfdif _nm/nAk1..^mB
53 52 nfcri nxm/nAk1..^mB
54 csbeq1a n=mA=m/nA
55 oveq2 n=m1..^n=1..^m
56 55 iuneq1d n=mk1..^nB=k1..^mB
57 54 56 difeq12d n=mAk1..^nB=m/nAk1..^mB
58 57 eleq2d n=mxAk1..^nBxm/nAk1..^mB
59 49 53 58 cbvrexw nxAk1..^nBmxm/nAk1..^mB
60 48 59 sylibr nxAnxAk1..^nB
61 eldifi xAk1..^nBxA
62 61 reximi nxAk1..^nBnxA
63 60 62 impbii nxAnxAk1..^nB
64 eliun xnAnxA
65 eliun xnAk1..^nBnxAk1..^nB
66 63 64 65 3bitr4i xnAxnAk1..^nB
67 66 eqriv nA=nAk1..^nB