Metamath Proof Explorer


Theorem iundisj

Description: Rewrite a countable union as a disjoint union. (Contributed by Mario Carneiro, 20-Mar-2014)

Ref Expression
Hypothesis iundisj.1 n = k A = B
Assertion iundisj n A = n A k 1 ..^ n B

Proof

Step Hyp Ref Expression
1 iundisj.1 n = k A = B
2 ssrab2 n | x A
3 nnuz = 1
4 2 3 sseqtri n | x A 1
5 rabn0 n | x A n x A
6 5 biimpri n x A n | x A
7 infssuzcl n | x A 1 n | x A sup n | x A < n | x A
8 4 6 7 sylancr n x A sup n | x A < n | x A
9 nfrab1 _ n n | x A
10 nfcv _ n
11 nfcv _ n <
12 9 10 11 nfinf _ n sup n | x A <
13 nfcv _ n
14 12 nfcsb1 _ n sup n | x A < / n A
15 14 nfcri n x sup n | x A < / n A
16 csbeq1a n = sup n | x A < A = sup n | x A < / n A
17 16 eleq2d n = sup n | x A < x A x sup n | x A < / n A
18 12 13 15 17 elrabf sup n | x A < n | x A sup n | x A < x sup n | x A < / n A
19 8 18 sylib n x A sup n | x A < x sup n | x A < / n A
20 19 simpld n x A sup n | x A <
21 19 simprd n x A x sup n | x A < / n A
22 20 nnred n x A sup n | x A <
23 22 ltnrd n x A ¬ sup n | x A < < sup n | x A <
24 eliun x k 1 ..^ sup n | x A < B k 1 ..^ sup n | x A < x B
25 22 ad2antrr n x A k 1 ..^ sup n | x A < x B sup n | x A <
26 elfzouz k 1 ..^ sup n | x A < k 1
27 26 3 eleqtrrdi k 1 ..^ sup n | x A < k
28 27 ad2antlr n x A k 1 ..^ sup n | x A < x B k
29 28 nnred n x A k 1 ..^ sup n | x A < x B k
30 1 eleq2d n = k x A x B
31 simpr n x A k 1 ..^ sup n | x A < x B x B
32 30 28 31 elrabd n x A k 1 ..^ sup n | x A < x B k n | x A
33 infssuzle n | x A 1 k n | x A sup n | x A < k
34 4 32 33 sylancr n x A k 1 ..^ sup n | x A < x B sup n | x A < k
35 elfzolt2 k 1 ..^ sup n | x A < k < sup n | x A <
36 35 ad2antlr n x A k 1 ..^ sup n | x A < x B k < sup n | x A <
37 25 29 25 34 36 lelttrd n x A k 1 ..^ sup n | x A < x B sup n | x A < < sup n | x A <
38 37 rexlimdva2 n x A k 1 ..^ sup n | x A < x B sup n | x A < < sup n | x A <
39 24 38 syl5bi n x A x k 1 ..^ sup n | x A < B sup n | x A < < sup n | x A <
40 23 39 mtod n x A ¬ x k 1 ..^ sup n | x A < B
41 21 40 eldifd n x A x sup n | x A < / n A k 1 ..^ sup n | x A < B
42 csbeq1 m = sup n | x A < m / n A = sup n | x A < / n A
43 oveq2 m = sup n | x A < 1 ..^ m = 1 ..^ sup n | x A <
44 43 iuneq1d m = sup n | x A < k 1 ..^ m B = k 1 ..^ sup n | x A < B
45 42 44 difeq12d m = sup n | x A < m / n A k 1 ..^ m B = sup n | x A < / n A k 1 ..^ sup n | x A < B
46 45 eleq2d m = sup n | x A < x m / n A k 1 ..^ m B x sup n | x A < / n A k 1 ..^ sup n | x A < B
47 46 rspcev sup n | x A < x sup n | x A < / n A k 1 ..^ sup n | x A < B m x m / n A k 1 ..^ m B
48 20 41 47 syl2anc n x A m x m / n A k 1 ..^ m B
49 nfv m x A k 1 ..^ n B
50 nfcsb1v _ n m / n A
51 nfcv _ n k 1 ..^ m B
52 50 51 nfdif _ n m / n A k 1 ..^ m B
53 52 nfcri n x m / n A k 1 ..^ m B
54 csbeq1a n = m A = m / n A
55 oveq2 n = m 1 ..^ n = 1 ..^ m
56 55 iuneq1d n = m k 1 ..^ n B = k 1 ..^ m B
57 54 56 difeq12d n = m A k 1 ..^ n B = m / n A k 1 ..^ m B
58 57 eleq2d n = m x A k 1 ..^ n B x m / n A k 1 ..^ m B
59 49 53 58 cbvrexw n x A k 1 ..^ n B m x m / n A k 1 ..^ m B
60 48 59 sylibr n x A n x A k 1 ..^ n B
61 eldifi x A k 1 ..^ n B x A
62 61 reximi n x A k 1 ..^ n B n x A
63 60 62 impbii n x A n x A k 1 ..^ n B
64 eliun x n A n x A
65 eliun x n A k 1 ..^ n B n x A k 1 ..^ n B
66 63 64 65 3bitr4i x n A x n A k 1 ..^ n B
67 66 eqriv n A = n A k 1 ..^ n B